
Real-time Augmented Reality

Laboratory for Computer Vision and Media Technology

Aalborg University · AAU 2004

Group 922 - Mikkel Sandberg Andersen and Tommy Jensen

2

FACULTY OF ENGINEERING AND SCIENCE
AALBORG UNIVERSITY

INSTITUTE OF ELECTRONIC SYSTEMS

TITLE:

Real-time Augmented Reality.

TIME PERIOD:

9th semester,
September 2nd to January 4th, 2005

PROJECT GROUP:
922 - 2005 CVG9

GROUP MEMBERS:

Mikkel Sandberg Andersen

Tommy Jensen

SUPERVISOR:

Claus Brøndgaard Madsen

NO. OF COPIES: 5

NO. OF PAGES IN MAIN REPORT: 127

NO. OF PAGES IN APPENDICES: 13

NO. OF PAGES IN TOTAL: 140

ABSTRACT:

The purpose of this project is to implement a
real-time Augmented Reality (AR) system and
to explore the possibilities of moving towards
photo-realistic rendering in AR.
Relevant factors, including state of the art, of
moving towards photo-realistic rendering are
explored, and two areas are chosen, illumina-
tion of virtual objects with the use of the Ir-
radiance Volume and shadow casting based on
a radiosity solution. Both methods are image
based, and thefore a solution to automatically
generate environmetal maps with a tracker and
a camera is explored.
An AR framework has been developed. Shad-
ing of arbitrary diffuse objects, with the use of
the Irradiance volume has been implemented.
Furthermore shadow casting has been imple-
mented through a reduced radiosity solution.
A standalone application for automatic gener-
ation of spherical environment maps, has also
been developed.
The system produces a good global illumina-
tion approximation, that can be rendered real-
time. Furthermore the shadow casting devel-
oped for the system, is able to create simple
soft shadows in the augmented scene, at re-
duced performance.

Synopsis

Formålet med dette projekt er at implementere et realtids Augmented Reality (AR) system og undersøge
mulighederne for at flytte et sådant system i retningen af fotorealistisk rendering.

Relevante faktorer, inklusive state of the art, for at gå modfotorealistisk rendering udforskes og to
metoder vælges. Illuminering af virtuelle objekter ved brugen af Irradiance Volume og skyggekastning
baseret på en radiosity løsning. Begge metoder er billedbaserede, så derfor undersøges muligheden for
a generere anvironment maps automatisk når et kamera med påmonteret tracker er til rådighed.

Der er, i dette projekt, udviklet et AR framework. Shading afarbitrære diffuse objekter ved hjælpe
af Irradiance Volume er implementeret. Ydermere er skyggekastning implementeret gennem en re-
duceret radiosity løsning. Der er yderligere lavet en applikation til, automatisk, at generere sfæriske
environment maps.

Systemet er i stand til at producere en god global illumineringsapproksimering, der kan renderes i
realtid. Yderligere er skyggelægningen, der er udviklet, istand til at lave simple bløde skygger i en
augmenteret scene, dog med reduceret ydeevne.

4

Preface

This report is the documentation of the work of group 922, 9thsemester specialisation in Computer
Vision and Graphics (CVG) 2004, Laboratory of Computer Vision and Media Technology, Aalborg
University.

The target audiences for this report are people with an understanding of 9th semester Computer Vision
and Graphics, or people with knowledge or an interest in the field of real-time, image based, ilumination
and shadowing in Augmented Reality.

The report is comprised by four parts: Introduction, Methods, Results and Discussion, and Appendix.
The appendix is placed last in the report as is the over all class structure of the system.

Source references are on the Harvard-form, an example of this is: [Sherman and Craig, 2003]. Chapters
and sections starting with a source reference is based on this source.

Attached is a CD-rom on which the following can be found:

• Report

• Source code

• Source binaries

• Class diagram

Aalborg University, Denmark. January 4th 2005.

Mikkel Sandberg Andersen Tommy Jensen

6

Contents

I Introduction 11

1 Introduction 13

1.1 A short history of computer graphics 13

1.2 Virtual or Augmented reality? 13

1.3 Applications of Augmented Reality 15

2 Moving towards photo-realism in Augmented Reality 17

2.1 Human Visual Perception 17

2.2 Illumination .. . 19

2.3 Illumination Environments 20

2.4 Shadowing . 21

2.5 Other considerations 22

2.6 Example of an indoor scene 23

3 Defining the project 25

3.1 The Aim of the Project .. . 25

3.2 Technology .26

3.3 System description 27

4 Results preview 31

II Methods 37

5 Camera 39

5.1 Camera calibration 39

5.2 Vignetting .. 41

6 Tracking 43

6.1 The Polhemus Isotrak2 43

6.2 Euler Angles .43

6.3 Calculating orientation vectors 44

6.4 Other issues in tracking 45

6.5 Tracker data in this project 45

7 Pre- and Post-processing 47

7.1 Full-screen Aligned Quad 47

7.2 Occlusion Handling 48

7.3 Anti-aliasing .. . 50

7.4 Motion Blur .51

7.5 Video Noise .52

7

CONTENTS

8 Modeling Real Scene Illumination 55

8.1 Image-Based Lighting 56

8.2 The Applied Method for the system 59

8.3 Creating an environment map 60

8.4 Mapping environment to Geometry 62

8.5 Updating an Environment Map 65

9 Illuminating a scene 67

9.1 Direct Illumination 68

9.2 Global Illumination 70

9.3 Illumination algorithms used for the system 74

10 Irradiance Volume 77

10.1 Radiance and Irradiance 77

10.2 Creation of an Irradiance Volume 78

10.3 Use of Irradiance Volume in the system 83

11 Radiosity 89

11.1 Radiosity matrix 89

11.2 Progressive refinement 90

11.3 Patch subdivision 90

11.4 Accelerating Radiosity 93

11.5 Form factor calculation 95

11.6 Use of Radiosity in the system 96

12 The Final system 101

12.1 Offline process .. . 101

12.2 Online process .. . 101

III Results and Discussion 105

13 Test 107

13.1 Irradiance sampling 107

13.2 Irradiance shading 108

13.3 Radiosity Shadows 110

13.4 Flexibility 113

13.5 Comparison with rendered image 115

13.6 Performance .. . 116

14 Conclusion 119

14.1 Purpose of the project 119

14.2 Methods .119

8

14.3 Results .. 120

14.4 Future possibilities 121

Bibliography 122

IV Appendix 125

A Euler Transform 127

B Lambertian Shading 129

C Intersection testing 133

D System Class Diagram 138

CONTENTS

10

Part I

Introduction

11

CHAPTER 1
Introduction

1.1 A short history of computer graphics

Computer graphics has seen an impressive development within the last few decades. The introduc-
tion of the personal computer has revolutionised the way computer graphics is thought of. Initially
driven by an academic interest, real-world graphical applications, such as computer games, became
wide spread during the late eighties and early nineties. Theground was set, when the first dedicated
graphics accelerator chip was introduced in the mid ninties, facilitating extra processing power to create
impressive graphics. The Graphics Processing Unit (GPU), aterm coined by NVIDIA Corporation by
analogy to the CPU, introduced a separate programming capability which initially was ably to carry
out simple tasks, but has evolved significantly and still is evolving in the direction of a higher level of
programmability.

The development of computer graphics has had two separate directions for some time. One direction
creating - low resolution - real-time 3D animated graphics used in virtual reality applications, and one
creating high quality photometric imagery e.g. as used in the film industry. Evidently, high quality is
also desirable in real-time 3D animations but until recently both CPU and graphics hardware has not
been able to provide sufficient computational power. Although it is still not possible to implement the
methods of very high quality Computer Generated Imagery (CGI), it is feasible that it is only a question
few years before the two directions will merge into one.

1.2 Virtual or Augmented reality?

The term Virtual reality (VR), introduced by Jaron Lanier in1989, describes an environment that is
simulated by a computer. VR can be displayed in several ways.Projecting the 3D world onto a regular
2D screen or by providing a 3D view with either the use of stereoscopic goggles, so-called head mounted
displays (HMD’s) or passive/active stereo imaging (e.g. like the VR Media Lab 6-sided CAVE). VR
usually provides some degree of manipulating the virtual world, either by the use of a standard keyboard
or more advanced sensory devices such as a 3D mouse (e.g Wanda) or vision based gesture recognition.

Augmented Reality (AR) was introduced by [Wellner, 1993] in1993 as the opposite of virtual reality.
Instead of immersing the user into a purely synthetic world,the purpose of AR is to augment the real
world with some sort of additional information, such as virtual objects. Milgrams Taxonomy for mixed
reality [Milgram and Kishino, 1994] defines the following three axes.

• Extend of world knowledge (Tracking)

• Extend of presence (level of immersion)

• Reproduction Fidelity (Computer Graphics)

13

CHAPTER 1. INTRODUCTION

To visualise the relationship of AR and VR, [Milgram and Kishino, 1994] presents the following rela-
tionship:

Real World (telepresent) - Augmented Reality - Mixed Reality - Augmented Virtuality - Virtual World
(immersed - synthetic).

The real-time branch of AR can, as well as VR, allow for manipulation of the virtual objects. AR
finds application in many areas including non-realtime rendered movies and augmented still photos. In
Figure 1.1 and Figure 1.2 examples of non real-time and real-time respectively Augmented Reality.

Figure 1.1: An example of non-real-time augmented reality used in the film adaptation of J.R.R. Tolkien’s Lord
of The Rings. (Image by New Line Cinema)

Figure 1.2: An example of real-time augmented reality. (Image by [Gibson et al.,])

An additional element of AR, with respect to VR, is how to involve the real world. This can be done by
the use of a Head Mounted Display with the ability to project an image into the visual path leading to
the viewers eye. Another approach is to record the real worldwith a camera, adding the augmentation

14

and displaying this on a 2D screen. The fact that AR mixes realworld with virtual objects requires
much attention in the area of simulating real world featureslike light and shadows, as to enable the
virtual objects to seamlessly blend into the real world.

Much research work in AR has been performed in the last decade, but for some reason AR has not
reached the same level of popularity as Virtual Reality. Thereason for this can be found in both the
preparation and actual execution of an AR-system. Usually AR involves costly tracking and display
equipment and a large amount of labour in producing the prerequisites such as a 3D model of the
augmented area, setting up the augmented area with controlled lighting, etc. This, among other factors,
is the reasong AR systems have been restricted to research facilities.

1.3 Applications of Augmented Reality

The applications for Augmented Reality extends into many areas.

One area where 3D graphics is already used extensively is in architectural visualisation and urban
planning. This enables users to see a given construction in situ. This provides architects and urban
planners to evaluate the consequences, with respect to e.g.the surroundings, of a given construction
layout. An illustration hereof can be seen in Figure 1.3.

Figure 1.3: An example of Augmented reality in urban planning. (Image by [ARTHUR, 2004])

An emerging area is the use of AR in education and entertainment, or combined the so-called edu-
tainment. Imagine when visiting a historical site it will bepossible to experience a reconstruction of
a historical battle first-hand, or see how ruins looked originally. One of the fastest growing industries
these days is the computer gaming industry. The industry hasalready embraced Virtual Reality, so AR
seems to be the next natural evolutionary step in computer games when the technique has matured.
With AR a new level of interactivity, feedback, and realism may be reached.

CHAPTER 1. INTRODUCTION

16

CHAPTER 2
Moving towards photo-realism in
Augmented Reality

The purpose of this chapter is to introduce several conceptsin the area of Augmented Reality (AR).
Furthermore some of the problems in creating photo realistic AR will be described.

2.1 Human Visual Perception

All though the Photo Realistic rendering field is built on a foundation of mathematical and physical
formulations, human visual perception plays a central rolein the creation of convincing Computer
Generated Imagery (CGI). This is especially the case in AR, where CGI is required to blend seamlessly
with real imagery. Hence, developing a basic understandingof human visual perception as a first step
in this project is relevant. Given the complexity and breathof this subject, only a few aspects of the
topic will be covered.

2.1.1 Image formation in the eye

Source: [Gonzalez and Woods, 2002]
Figure 2.1 shows a simplified cross section of the human eye. The eye is nearly a sphere, with an
average diameter of app. 20 mm. The eye is enclosed by three membranes, with incoming light passing
the cornea, the lens and then finally hitting the retina, located at the back of the eye.

When the eye is properly focused, light from an object outside the eye is formed as an image on the
retina. Image sensing is afforded by the distribution of discrete image receptors on the retina. There
are two classes of receptors: Cones and rods. The cones are located in the central area of the retina and
are very sensitive to colour, there are between 6 and 7 million cones in each eye. The number of rods is
much larger, some 75 to 150 million are distributed over the entire retinal surface in each eye. The rods
do not sense colour, but senses low levels of illumination. The rods serves to give an overall picture of
the field of view.

2.1.2 Image perception

Source: [Gonzalez and Woods, 2002]
While the eye on the surface may share similarities with the electronic equivalent, the camera, it is not
quite as simple. One part of the human perception is the imageformation, another is the way images
are interpreted by the human brain. There are several human perception phenomena which cannot yet
be fully explained, an example of one of these follows.

Because a digital image is displayed as a discrete set of intensities, the eyes’ ability to discriminate
between different intensity levels is an important consideration when presenting computer generated

17

CHAPTER 2. MOVING TOWARDS PHOTO-REALISM IN AUGMENTED REALI TY

Figure 2.1: A cross section of the human eye (image by [Gonzalez and Woods, 2002]).

imagery. An example on a phenomena, related to this is calledsimultaneous contrast, can be seen in
Figure 2.2. It is related to the fact that a region’s perceived brightness does not depend simply on its
intensity.

(a) (b) (c)

Figure 2.2: Examples of simultaneous contrast. The inner squares all have the same intensity, but they appear
progressively darker as the background becomes lighter (image by [Gonzalez and Woods, 2002]).

Conclusively, it is clear that human visual perception is not simply a question of physically correct
models of light transport in a given scenario. A significant part of human perception is controlled by
human recognition, interpretation, and experiences. Thusan important consideration in creating photo
realistic AR is not necessarily to create a physically correct rendering, but most importantly to create
images that appear correct to the user.

18

2.2. ILLUMINATION

2.2 Illumination

Light is the basis of all vision, and following also in computer graphics. Light is included in the
complex area of quantum physics. All-though this is a complex area, is is important to develop a basic
understanding of the principles of light behaviour.

Light is electromagnetic radiation with a wavelength ranging from ultraviolet at 100 nm up to infrared
at 1 mio. nm. In between lies the spectrum of light that is visible to the human eye, which ranges from
about 380-770 nm.

Through time there have been many suggestions as how to describe the nature of light. The modern
theory is the wave-particle duality, introduced by Einstein in the early 1900s, which is a consequence
of quantum mechanics. This theory holds that light and matter simultaneously exhibits properties of
waves and particles (photons). This means that some effectsof light cam be explained through wave
theory, e.g. reflection and diffraction, and other effects,e.g. absorption, due to its particle nature.

This in consequence means, that what the human eye see, is a result of emitted light particles (photons)
interacting with the surrounding environment. In general,light leaves some light source, e.g. a lamp
or the sun, is reflected from many surfaces and then finally reflected to our eyes, or through an image
plane of a camera.

Within computer graphics, illumination is often divided into two categories, local and global illumina-
tion.

The contribution from the light that goes directly from the light source and is reflected from the sur-
face is called "local illumination". So, for a local illumination model, the shading of any surface is
independent from the shading of all other surfaces.

A "global illumination model" adds to the local model the light that is reflected from other surfaces to
the current surface. A global illumination model is more comprehensive, more physically correct, and
produces more realistic images.

Some of the effects that are caused by interaction between light and surfaces are listed here:

• Reflection

• Refraction

• Diffraction

• Dispersion

• Polarisation

• Coherence

• Scattering

• Shadowing

These are all relevant contributors to the lighting conditions of a given scene. They must therefore
be modelled and applied when required. Obviously, taking into account, all aspects of the physical
structure of a scene and the objects within the scene, requires both a great deal of information and also
a great deal of computational power to process this information.

19

CHAPTER 2. MOVING TOWARDS PHOTO-REALISM IN AUGMENTED REALI TY

To reduce the amount of information to be stored, there are several ways to approximate the light-
ing conditions. These methods are categorised as light source estimation methods. An approach to
modeling scene illumination is the image based lighting. This requires image data covering the entire
augmented location, viewed from some central location. Theimage data is analysed to determine how
to model the real scene illumination so that it can be recreated and used when lighting virtual objects.
Image based lighting usually involves the steps found in Figure 2.3.

illumination
Modelling real sceneLight Source Estimation Rendering of illumination

Figure 2.3: The process of image based lighting.

2.3 Illumination Environments

Illumination in AR can roughly be divided into two categories of scenes which are subsets of a general
illumination case. These are non enclosed spaces with very few local illumination sources meaning
almost all illumination is global illumination. The other category includes enclosed environments with
a high amount of surfaces and many local illumination sources. Figure 2.4 illustrates these two scenarios
exemplified by an indoor and an outdoor environment.

A B

(a)

BA

(b)

Figure 2.4: (a) An outdoor scene lit by with primarily globalillumination. (b) An indoor scene lit by both global
illumination and several local illumination sources.

The two scenarios in Figure 2.4 differ in complexity. The indoor scene being significantly more com-
plex. In the outdoor scene spatial lighting conditions willnot differ significantly because the illumina-
tion source is distant. The opposite is the case in the indoorscene. The reason for this is that illumination
is based on local illuminations sources, windows and lamps,and also global sources, reflective surfaces.

Consider points A and B in Figure 2.4.a. The primary illumination source is the sun and derivatives
of sunlight, e.g. scattered light from the atmosphere, and reflections from surroundings. Since all
light sources are distant, placing an object in either of thepoints will only affect lighting conditions
minimally, if at all. The case is the opposite in Figure 2.4.b. As can be seen from the illustration, the
lighting conditions in points a and b differ significantly. Partly because of sunlight becoming apertured

20

2.4. SHADOWING

by the windows, creating directed light, but also because objects are close to both the direct light sources
and the indirect, such as walls and floors.

2.4 Shadowing

Shadows are an important element of realism in Augmented Reality. In 3D images shadows are essential
to provide the viewer with visual cues about object placement. In Figure 2.5 the importance of shadows
in providing a sense of object placement can be seen.

(a) (b) (c)

Figure 2.5: Three illustrations of shadow importance. The object has the same placement in all three figures. (a)
Object with no shadows. Viewer has no sense of placement. (b)Object is distant from the viewer. (c) Object is
closer to the viewer.

The terminology used in this section is illustrated in Figure 2.6. Occluders are objects which cast
shadows onto receivers. Umbra is a fully shadowed region andpenumbra a partially shadowed region.

umbra/
shadow

penumbra

receiver

light source

occluder

Figure 2.6: Shadow terminology: light source, occluder, receiver, shadow, umbra, and penumbra. (Image by
[Akenine-Möller and Haines, 2002]

When dealing with real world shadows, many of the principlesin shadow methods often used in real-

21

CHAPTER 2. MOVING TOWARDS PHOTO-REALISM IN AUGMENTED REALI TY

time graphics will not appear realistic, because they are constructed for a limited number of ideal point
light sources. Complex real world lighting scenarios are composed of many area light sources. Outdoor
scenes are lit by both direct sunlight but also atmospherically scattered sunlight, which is a very large
area light source. In indoor scenes walls, floors and windowsall constitutes light sources. All of these
factors result in both multiple shadows and shadows with soft edges.

Generating correct shadows calls for a detailed analysis ofa given scene, determining which surfaces,
both light sources and reflective surfaces, contribute to the irradiance in a given point in the scene.
among the methods for doing exactly this is Radiosity.

2.5 Other considerations

2.5.1 Occlusions

Enabling real world objects to occlude virtual objects and vice versa, is essential in creating convincing
Augmented Reality, but there are several things working against attaining a perfect occlusion handling.
Ideally it is possible to model every aspect of an scene to be augmented. This is feasible for a controlled
laboratory setup, but quite difficult when dealing with locations outside the laboratory. Some of the
major problems in this field are

• Steady tracking of camera or Head Mounted Display to ensureperfect alignment of occlusion
mask

• Level of detail of occlusion mask vs. system performance

• Dynamic changes in the scene, e.g. people walking through the scene

Not all of the above apply to both outdoor and indoor scenarios, previously mentioned in section 2.3.
The complexity of occlusion grows with the complexity of thechosen scene. Thus an indoor scene may
require more elaborate 3D models than an outdoor.

2.5.2 Reflections

When dealing with computer graphics it is often convenient to assume that all surfaces are opaque and
diffuse, meaning that no light is refracted and they reflect equally much light at any point. This is far
from the case in a real world scenario. Often a given scene is rich on surfaces which are to some degree
reflective, be it a glossy tile floor, window glass, water or actual mirrors. Realism in scenes with many
reflective surfaces is dependent on whether the virtual objects behaves as real objects, i.e. are reflected
on relevant surfaces.

2.5.3 Camera phenomena

Two phenomena inherent in video footage are motion blur and video noise. These do not exist in
computer generated imagery and as a consequence must eitherbe removed from the source footage or
applied to the rendered graphics.

Motion blurring is caused by the movement of an object acrossthe screen during a frame. This is due to
the fact that a video image is not a picture of an infinitesimally small time unit but rather the result of an

22

2.6. EXAMPLE OF AN INDOOR SCENE

exposure of normally several milliseconds, determined by the shutter speed. Motion blurring appears
as smeared streaks across the image. This effect cannot easily be removed but it can be imitated in
computer graphics.

Video noise is caused by both static induced onto the imagingplane (Charge Coupled Device (CCD))
and compression errors in the camera. Video noise appears asboth a grainy and unsettled image. This
is difficult to remove, but can also be imitated and applied inpost processing to the virtual elements in
the scene.

(a) (b)

Figure 2.7: Two figures illustrating common camera phenomena. (a) Motion blur. (b) Video noise, (image by
[Ruether, 2002]).

A phenomena which is apparent in computer graphics is aliasing. This effect results in jagged edges
and can clearly be seen on any computer generated edge, whichis not parallel to any of the two axes.
The effect is not nearly pronounced in video footage, since edges are blurred during the image forming
process. It is possible to generate anti-aliased graphics,this is important for the augmented objects to
appear as a part of the real scene.

2.6 Example of an indoor scene

In Figure 2.8 an example of an indoor scene can be seen. The scene provides examples of nearly all
phenomena described in the previous sections.

The scene is illuminated by several light sources. Large window sections and skylights provide sunlight
during daylight, else incandescent lights provide light. The white tile floor is a considerable indirect
light source. Shadowing is complicated due to the many direct and indirect light sources. Objects in the
scene cast multiple shadows with soft edges.

Occlusions are fairly straightforward when dealing with straight lines and other inorganic shapes,
thought it is worth noting that creating occlusions with thelamps seen in the figure is highly dependent
on precise tracking and the positioning of the camera. Humans walking through the scene constitutes
highly organic and dynamic shapes which are near impossibleto model in advance, which in terms
make occlusions highly difficult.

Finally, this particular scene is rich on reflective surfaces. The white tile floor is somewhat reflective,
while the glass sections are highly reflective.

23

CHAPTER 2. MOVING TOWARDS PHOTO-REALISM IN AUGMENTED REALI TY

Figure 2.8: Indoor scene used in the project. Problem areas are marked in red.

24

CHAPTER 3
Defining the project

3.1 The Aim of the Project

The goal of this project is to implement a real-time Augmented Reality (AR) system. The objective of
the system will be to place virtual objects in a real scene, enabling these to interact with existing light,
shadow, and occlusion. The user will be able to interact withboth the viewing direction and the virtual
objects.

Amongst the several problem areas within the development ofa real-time AR system, select areas will
receive in-depth attention in this project, these areas areconcentrated in the field of creating convinc-
ing illumination and shadowing in real-time. This area has been chosen, as it is an important part of
seamlessly blending virtual objects with the real world.

A phenomena within real-time illumination that currently receives much attention in research, is Global
Illumination (GI) which is a general term for methods that approximates real world illumination. Real
world illumination is not a trivial task. Complex interaction between not only direct but also reflected
light and light scattered within materials requires both complex mathematical models of the world and
processing of a large amount of data for each picture rendered.

To make real-time GI feasible, an approximation to the actual lighting conditions in the scene is needed.
Usually this can be accomplished by analysing a panoramic (360◦ x 180◦) still image representing the
entire surrounding environment, a so-called environment map. This method has no way of handling dy-
namic changes in the lighting conditions. This project willdescribe a method for dynamically updating
an environment map, so as to be able to update the approximation the the lighting conditions.

An important factor in computer graphics are shadows, as they provide the viewer with visual cues
about object placements. Methods for generating believable image based shadows in real-time will be
investigated.

The real-time demands in the context of this system are soft real-time demands. This, in consequence,
means that it is necessary for the viewer to be able to interact with the system in a way that does not
impair the illusion of the virtual objects blending seamlessly with the real scene. To achieve this effect
we have decided that a frame rate of at least 20 frames-per-second is required.

The effort in this project will be in investigating the existing state of the art within the areas described
in this section, and how to combine these to achieve a functioning system. The focus of this project
will be on evaluating how these methods work in a collaborative system. Furthermore it will investigate
how to implement an AR system that will function in a non-controlled indoor environment with respect
to dynamically changing light conditions.

This project is limited to rendering diffuse objects. This means that reflective surfaces, like metals, and
translucent/refractive objects, like glass, can not be rendered. This delimitation results in a substantial
reduction of system complexity.

Furthermore, the interaction with the environment of the augmented scene in this system will be limited
to virtual objects casting shadows onto the real world. Thismeans that virtual objects will not cause

25

CHAPTER 3. DEFINING THE PROJECT

reflections on surrounding real world objects, neither willthey cause effects such as colour bleeding.

Virtual object interaction is limited to collision detection. This means that virtual objects will not be
able to cast shadows on each others, neither will the cause other effects such colour bleeding.

3.2 Technology

The emphasis of this system is, as described earlier, on implementing a real-time system. Keeping the
real-time demands in mind, when choosing both operating system, algorithms and code language is
essential.

Real-time demands limits both the types of algorithms that can be used and the complexity of the scene
we are able to augment. Some algorithms are too computationally heavy to be used in an online system,
and are best fitted for offline rendering for e.g. movie effects.

The movie special effects industry adopted the concept of Augmented Reality relatively quickly. while
the augmentations in movies often look very convincing, these results are not easily achieved. They are
based on 3D models with very high level of detail, and often tracking and occlusions are done manually
frame by frame by accomplished professionals. These techniques are not applicable for a real-time
system.

The Augmented System in this project seeks to find the balancebetween advanced illumination and
shadowing algorithms and a reasonable frame rate. The primary way of achieving this will be through
extensive use of pre-calculated data where it is possible. This means that the system will be comprised
of an offline and an online part. The offline part includes the pre-calculation processes of analysing and
modeling scene illumination and shadowing. The online partshould ideally be reduced to rendering
scene graphics, shaded with the help of the pre-calculated data .

Since the main idea of the project is to implement a system, that will function outside a research lab
it has been decided that the target platform is standard consumer class workstations. the system is
implemented in the object oriented programming language C++, and will run on Microsoft Windows
platform. MATLAB will be used for camera calibration.

3.2.1 Hardware

The video feed used in this augmentation process is capturedthrough the use of a Philips ToUCam
840K. The resolution of the video feed is maximally 640x480 pixels at a frame rate of 30 fps. Because
the camera is a web cam using the USB 1.1 standard for video transfer, the video data is compressed in
the camera, and is therefore prone to a certain amount of video noise. Furthermore the capture pipeline
in Windows XP imposes a delay from the time a picture is captured till it is available.

For this system it is necessary to continuously determine the absolute orientation of the camera, as to
match both the augmented objects and the 3D scene to the real world. In this system the tracking is
done using the Polhemus ISOTRAK 2 magnetic tracking system.This tracker has fairly low accuracy
and resolution, but has been chosen due to the fact that it wasthe best of those readily available.

3.2.2 Graphics API

When choosing a graphics API, there are two major directions: Raytracer based or rasterization based.
All major API’s these days are based on rasterization rendering, hence API’s based on this technique

26

will be considered.

Currently two major graphics API exists: the Open Graphics Library (OpenGL) and Microsoft Di-
rect3D. Direct3D is an integrated part of the DirextX API, proprietary property of Microsoft, for use
on windows machines only. OpenGL was originally developed in 1992 by Silicon Graphics, as a de-
scendant of an API known as Iris GL for UNIX. It was created as an open standard, and is available on
many different platforms, including windows and linux. With the release of DirectX8 came the concept
of vertex and pixel programs (or shaders), which enables theprogrammer to replace certain parts of
the rendering pipeline with custom code. OpenGL also implements vertex and pixel programs through
extensions.

Summarizing, there is no difference in what can be achieved with the two API’s. Direct3D has a homo-
geneous hardware independent extension interface, while OpenGL does not. This means that depending
on which extensions are used in OpenGL software will become more or less hardware dependent. For
this project OpenGL has been chosen, since the authors have the most experience with this API.

3.3 System description

When designing a live-feed AR-system there are some generalproblems that needs to be taken into
consideration. The system must create a graphics overlay with virtual objects on a live video feed. The
position and orientation of the camera providing the video feed is provided by the means of a hardware
tracking unit. Occlusion between virtual and real objects are handled through the use of a pre-modeled
3D representation of the scene.

3.3.1 Rendering pipeline

The system consists of two main parts, an off-line that is carried out during system initialisation, and
an on-line part, in which the actual rendering takes place. The two augmentation pipelines can be seen
in Figures 3.1 and 3.2 respectively.

CHAPTER 3. DEFINING THE PROJECT

Main Off-line Augmentation Pipeline

Build environment map

Undistorted Video feed

Tracker data

Computation pipeline

Scene illumination
parameters

Compute scene
illumination parameters

Data

Scene shadow
parameters

Compute scene
shadow parameters

Figure 3.1: An outline of the off-line part of the augmentation pipeline-

28

3.3. SYSTEM DESCRIPTION

Post Process

Draw buffer to screen

Draw Video Image to
screen

Undistorted Video feed

Translate objectsTracker data

Set-up occluding objects3D scene model

Draw virtual objects
to buffer

Rendering pipeline

3D object model(s)
Object positions

Pre-computed scene illumination
Shade virtual objects

Compute shadows

Draw shadows to
buffer

3D scene model
3D object model(s)

Object positions
Pre-computed scene illumination

Video noise
Motion blur
Anti aliasing

Update pre-computed
scene illumination

DataIllumination update loop

Evaluate change in
illumination

Update environment map

Main On-line Augmentation Pipeline

Pre-computed shadow
parameters

Figure 3.2: An outline of the on-line part of the augmentation pipeline.

29

CHAPTER 3. DEFINING THE PROJECT

30

CHAPTER 4
Results preview

This chapter presents the results of the project, to give thereader a better understanding and overview
of the project before the methods, used to create the images,presented in this chapter, are described in
detail.

This project is concerned with the rendering of virtual objects within a real environment, with the intent
to create the illusion that the virtual object is a integral part of the environment in which it is placed.

The first step in rendering the objects for the scene, is to create an environment map of the scene. The
environment map of the scene used in the results for this project is seen in figure 4.1 on the following
page.

To showcase the results of the project a dragon figurine has been selected to perform as test object. In
figure 4.2 on the next page and 4.3 on page 33 the dragon is placed at two different positions in the lobby
scene selected for the project. The two figures shows that theshading of the object is slightly changed
when moved. The shading of the figure is in both cases dominated by the bright floor, while the ceiling
with the spotlights is not very significantly represented inthe shading. The reason for this is that the
method used to shade the objects makes a low resolution sampling of the environment, which seldom
samples the directions of the lamps. If the lamps are hit by a sample, it will not be very noticeable if all
the adjacent samples are black. This problem can be remediedby using High Dynamic Range Images
as environment maps, and by making sure that every light source is sampled. Figure 4.3 also shows that
the figurine is occluded by the 3D model of the environment.

In figure 4.4 on page 33 the environment map has been modified increase the light coming from above,
to more precisely match the real lighting of the scene. The modified environment map is applied to the
shading of the virtual object in the scene, and result is seenin figure 4.5 on page 34, where the object is
shaded as if light is coming from above at the same time as the floor is shading from below. A shadow
is rendered into the scene, which adds to the illusion that the object is actually placed within the scene.
The shadow cast is not an accurate shadow, because the current implementation is limited to support
shadow casting using the objects bounding sphere.

In figure 4.6 on page 34 the virtual dragon figurine is scaring an innocent bystander, who is unaware
the object in fact does not exist. The object has been toned down with an albedo value to better match
the scene.

In figure 4.7 an environment map with a bright sun has been recorded, and the effect on the test object
is seen in figure 4.8. Furthermore figure 4.8 shows that the system is not necessarily locked to a certain
camera position, if a user wishes to move the camera, it is possible.

In figure 4.9 on page 36 the object has been placed in a new sceneshaded by the environment map seen
in figure 4.10 on page 36. This is done to show the system is generic, and can be used in a wide range
of environments given information about it, like an environment map and a 3D model.

CHAPTER 4. RESULTS PREVIEW

Figure 4.1: The environment map of the scene used in the results.

Figure 4.2: The dragon is placed at two different positions in the lobby scene selected for the project, for shading
comparison. Shadows are disabled for the shot.

32

Figure 4.3: The figurine has been moved to a new position, to show shading changes, and occlusion handling.

Figure 4.4: The modified environment map

33

CHAPTER 4. RESULTS PREVIEW

Figure 4.5: The object is shaded as if light is coming from above at the same time as the floor is shading from
below, with an added shadow cast by the objects bounding sphere.

Figure 4.6: The virtual dragon figurine is scaring an innocent bystander.

34

Figure 4.7: An environment map recorded with a bright sun.

Figure 4.8: The figurine shaded by the bright sun.

35

CHAPTER 4. RESULTS PREVIEW

Figure 4.9: The object is placed in a smaller confine, close towalls. The scene is a group room.

Figure 4.10: The environment map for the group room scene.

36

Part II

Methods

37

CHAPTER 5
Camera

This chapter will describe why camera calibration is performed. Furthermore some of the problems
with the camera that is used are addressed.

5.1 Camera calibration

The image formation in a camera differs significantly from that in a computer graphics rendering sys-
tem. The real world image formation is affected by real worldinaccuracies. This means trouble when
computer generated imagery is to be seamlessly blended in with real imagery.

Basically both imaging systems work by the pinhole principle, the difference being that in real world
cameras lenses are introduced instead of a small hole. This allows for a greater amount of light to pass
onto the imaging plane, thereby reducing the exposure time.An illustration of a simplified camera can
be seen in Figure 5.1

f

d

Focal point

Image plane

Figure 5.1: A simplified camera model.f is the focal length.

The calibration tool analysed here is “The Camera Calibration Toolbox for Matlab” [Bouguet, 2004]
which also has a C implementation in OpenCV. The camera modelused in this calibration tool operates
with two contributors of distortions in a camera. These are the optics and inaccuracies in the imaging
plane, in our case a CCD chip (Charge Coupled Device).

The optics of a camera will mainly cause two types of distortion in an image. Radial and tangential
distortion. Radial distortion is caused by the non-linear characteristics of a lens, which means that pixel
coordinates in fact represents an arced coordinate system.The tangential distortion is caused by “de-
centering” of the lens elements in a compound lens and other manufacturing defects. The tangential
distortion is often discarded by the justification that mostlenses manufactured these days do not suffer
from de-centering.

An exaggerated illustration of these distortions can be seen in Figure 5.2.

39

CHAPTER 5. CAMERA

Figure 5.2: Radial and tangential distortion

The Philips ToUCam 840 webcam used for this project clearly shows radial distortion, as can be seen
in Figure 5.3.

Figure 5.3: A checkerboard image taken with the Philips ToUCam 840. Radial distortion is clearly visible.

The main problem when blending virtual objects into real scenes is the radial distortion. The computer
rendered objects do not suffer from distortion which consequently means that there will be a noticeable
difference between the real and the virtual objects. The error will be most pronounced when trying
to align straight virtual objects to the real scene, these objects could be occlusion planes which are an
essential part of augmented reality systems.

There are two solutions to enabling good alignment in an image by using the intrinsic camera parame-
ters. Un-distorting the image or distorting the graphics. The latter would entail rendering graphics to a
texture, distorting it and the composite the two images. Thefirst has a ready-to-use solution built into
OpenCV.

The calibration will produce a set of intrinsic or internal camera parameters. These are the principal

40

point which is the center of the lens, the focal length which is the distance from the image plane
(CCD) to the principal point. Furthermore there are two setsof distortion parameters, skew coefficients
which describe angular skew in the CCD array and the distortions, which are the radial and tangential
distortions.

Furthermore the calibration returns the focal length of thecamera, denotedf in Figure 5.1. This is used
by the undistortion process, but is also used to calculate Field of View (FOV) of the camera. The FOV is
used to match the OpenGL camera to the real camera. Assuming that the camera image is equiangular,
FOV is calculated using equation 5.1.

FOV = 2arctan

(

ut

2f

)

(5.1)

Whereut denotes the width, in pixels, of the image plane (CCD).

5.2 Vignetting

The webcam used in this project suffer greatly from what is known as vignetting. Vignetting is some-
thing that occurs in all photographic lenses. It means the darkening of all edges relative to the center.
Usually two types of vignetting occurs: Optical and mechanical vignetting. Optical vignetting is an
inherent problem in all lenses. It occurs as a result of the way light is refracted in the lens. Depending
on the lens construction the phenomena can be more or less prominent. Mechanical vignetting is caused
by light being partially blocked in the camera, this can, among other factors, be caused by misaligned
lens hoods. Vignetting is very pronounced in figure 5.3.

CHAPTER 5. CAMERA

42

CHAPTER 6
Tracking

This chapter will describe how tracking is used in this project. This involves how tracking is performed,
and how the data is used to match real world video footage to the virtual world.

To be able to correctly align the graphic overlay in an augmented reality system, it is necessary to
determine the exact direction the camera is oriented. This chapter concerns a system consisting of a
camera fixed to a orientational tracking unit.

6.1 The Polhemus Isotrak2

[iso, 2001]
The Isotrak2 system by Polhemus is a 6-DOF (Degrees of Freedom) magnetic tracking system. The
system consists of a single transmitter, which sequentially generates 3 perpendicular magnetic fields.
The technology is based on generating near field, low frequency magnetic field vectors from three
antennas in the transmitter. The system can handle 2 separate receivers, which are devices able to
detect the field vectors using three concentric remote sensing antennas. This means that each receiver
in the system delivers both positional and orientational data.

This project will not use the positional data, only orientation data. The receivers deliver all-attitude
angular coverage with a resolution of 0.1◦. The static accuracy is 0.75◦ RMS1. The relatively large
deviation precludes displaying a completely stable video overlay, but with a sliding window averaging
the accuracy will suffice for this project.

6.2 Euler Angles

[Weisstein, 2004]
For each sample, the Isotrak2 as a standard generates 6 parameters. These are 3 Cartesian, positional,
coordinates and 3 orientational angles. The orientationalangles are returned in Euler angles: Azimuth,
elevation, and roll. According to Euler’s rotation theorem, any rotation may be described using three
angles(φ, θ, ψ).

φ ǫ [−π, π]

θ ǫ [0, π]

ψ ǫ [−π, π]

Azimuth, φ is a rotation around the z-axis, elevationθ about the x-axis, and rollψ about the z-axis
again. These three rotations are illustrated in Figure 6.1.

1RMS (Root Mean Square) in the context of tracking devices is synonymous with standard deviation

43

CHAPTER 6. TRACKING

φ

x

z

y

(a)

y

'η
θ

z

x

'z

(b)

x

'x

θ

φ
ψ

'η
'z

z

y

(c)

Figure 6.1: Euler angles illustrated. (a) Azimuth,φ (b) Elevation added,θ (c) Roll added,ψ. (Image by
[Weisstein, 2004])

The Euler transform can be seen in appendix A on page 127.

Euler angles have some limitations, which involves a phenomena called a gimbal lock. This happens
when rotations are made so that one degree of freedom is lost.This occurs when two rotational axes of
an object are oriented in the same direction. This will result in wrong rotations.

Another approach to rotations is through the so-called Quaternions. These do not exhibit the gimbal
lock problem.

6.3 Calculating orientation vectors

Orientation vectors in OpenGL are two vectors, the target vector,~t, describing in which direction the
camera is pointing and the up vector,~u, describing the up direction for the camera. These two vectors
are calculated from the Euler angles as shown in equations 6.2 and 6.3.

~d = [0, 0,−1]T (6.1)

The target vector is given by equation 6.2.

~t =









x

y

z









=









~d.x · cos(φ) + ~d.y · (sin(θ) + ~d.z · cos(θ)) · sin(φ)

~d.y · cos(θ) − ~d.z · sin(θ)

−~d.x · sin(φ) + ~d.y · sin(θ) + ~d.z · cos(θ) · cos(φ)









(6.2)

The up vector is given by equation 6.3.

~u =









x

y

z









=









sin(ψ) ∗ cos(φ) + cos(ψ) ∗ sin(θ) ∗ sin(φ)

cos(ψ) ∗ cos(θ)

sin(ψ) ∗ sin(φ) + cos(ψ) ∗ sin(θ) ∗ cos(φ)









(6.3)

44

6.4 Other issues in tracking

Delay is a problem, that is imposed into the frame grabbing pipeline by both hardware limitations and
the operating system on the computer. This poses a problem ifthe tracker in the system is able to
provide data faster than the camera. This will result in the 3D models in the augmented system will
be ahead of the image data. A solution to remedy this problem is impose a matching delay into the
tracking pipeline.

Another issue is the displacement from the rotational points of the camera mount and the image plane in
the camera. This will, if not compensated, impose a small error on the actual placement of the camera.

6.5 Tracker data in this project

For use in OpenGL, Euler angles can be described in terms of a rotation matrix as described in 6.2 on
page 43, which is multiplied with the OpenGL model view matrix. This will ensure that the OpenGL
“camera” is matched exactly to the orientation of the tracker.

Another approach is to calculate a set of two vectors for use with the gluLookAt() function, with one
pointing in the direction in which the camera is looking and the other pointing up. This will yield the
same result as with the method first mentioned. The latter method is used in this project.

CHAPTER 6. TRACKING

46

CHAPTER 7
Pre- and Post-processing

This chapter examines which issues that needs to be addressed before and after the virtual object is
rendered to the frame, which improves the systems ability tomerge real and virtual objects.

To successfully merge virtual and real objects in real-time, there are several issues that needs to be dealt
with. The following sections will explore the fundamental pre- and post-processing steps in the aug-
mented reality system rendering pipeline, like the rendering of the video image to screen, the rendering
of occlusion objects, anti-aliasing, motion blur to the image, and video noise rendering.

7.1 Full-screen Aligned Quad

Source: [openGL.org, 2004] and [Behrens, 1995]
The system captures video from a camera, and represents it for the user. This section looks into how the
video is represented in openGL to always appear on the screen. The camera distorts the video signal as
seen in chapter 5 on page 39, and therefore the program must undistort the signal before it is rendered
to the screen. The undistorted video-signal needs to be displayed full-screen underneath the computer
graphics.
The straightforward way to do this is to set both the Projection and Modelview matrices to the identity,
and draw an equivalent GL_QUADS primitive.
The pseudo-code for such an operation would be:

Pseudo code 7.1The creation of a Full-screen Aligned Quad
1. Push MODELVIEW matrix down by one in the stack and duplicate current matrix.
2. Load identity matrix into MODELVIEW matrix on top of the stack.
3. Push PROJECTION matrix down by one in the stack and duplicate current matrix.
4. Load identity matrix into PROJECTION matrix on top of the stack.
5. Get current image from video capture
6. Render a quad in the z-plane to color buffer.
7. Pop PROJECTION matrix stack, and replace current matrix with the one below it on the stack.
8. Pop MODELVIEW matrix stack, and replace current matrix with the one below it on the stack.

This will render a quad that occupies the entire screen, and whatever projection and model matrices
already set up before the operation will be restored.

The operation renders the image to the color buffer only, so whatever depth information rendered to
depth buffer remains.

47

CHAPTER 7. PRE- AND POST-PROCESSING

7.2 Occlusion Handling

When merging two images, it is desirable to be able to controlwhich parts of one image is to be blended
onto the other, and how much they are blended. Masks are the typical way to handle occlusions. An
example of this is seen in figures 7.1 and 7.2.

(a) (b)

Figure 7.1: Two images, where the virtual helicopter is supposed to be flying around the hill.

(a) (b)

Figure 7.2: An example of how a mask is used to merge parts of one image onto another

In three dimensions the problem of masking becomes more apparent, and can no longer be handled with
traditional masking. Occlusion between real and virtual objects is a way to create "3D masks", and are
essential for the illusion of the virtual objects being a part of the real scene. The challenge is very
simple to overcome, if a 3D model of the real scene is available. The depth buffer handles occlusions

48

7.2. OCCLUSION HANDLING

between rasterized fragments in OpenGL, and may be used to handle the occlusions between real and
virtual objects as well. By rendering the model of the real objects to the depth buffer only, the depth
buffer will contain the depth information of the real scene,when the virtual objects are rendered to both
depth and color buffer. This way occlusions are handled automatically by the graphics API. In figure
7.3 the lobby scene and its corresponding occlusion 3D modelis seen.

Figure 7.3: The lobby scene and its corresponding occlusion3D model.

In the project occlusion handling has been implemented, andan example of it in action is seen in figure
7.4. A black sphere is set to rotate around the position of a brick. A 3D model has been made of the
brick, and used as occlusion object. As seen in the figure, theocclusion makes sure that when the sphere
is placed behind the brick, it will appear as if it is behind the brick.

Figure 7.4: A virtual sphere is set to rotate around a real brick.

49

CHAPTER 7. PRE- AND POST-PROCESSING

7.3 Anti-aliasing

Source: [Bergen County Academies, 2004] and [SigGraph, 2004]
Anti-aliasing is the process of blurring sharp edges in pictures in order to get rid of jagged edges.
After an image is rendered, some applications automatically anti-alias images. Edges in the image are
detected, and then blurred with the adjacent pixels to produce a smoother edge.

In order to anti-alias an image when rendering, the computerhas to take samples smaller than a pixel in
order evaluate exactly where to blur and where not to. For example, if one pixel is found to be placed
on the edge of two objects, sub-pixel samples are made for that pixel, and checked how many are
from each object, the relationship between the number of sub-pixels hitting each object is the mixture
relationship between the two surfaces for the edge pixel. The resulting color values from the subsamples
are averaged into a resulting blurred pixel, when viewed from a distance gives a smoother edge effect.
To find which pixels need sub-sampling, the stencil buffer can find the silhouette of each object, which
helps the process of detecting edge pixels.

Another similar method is supersampling, where more than 1 sample is performed for all pixels. These
samples are at regularly spaced intervals. For example, if an image is computed at 2x by 2x or 4x
by 4x points and displayed at 1x by 1x pixel resolution. Sampling at 2x by 2x for a 1x by 1x image
increases the number of samples and graphics computations (and Z-buffer requirements for scan-line
graphics) by a factor of 4. An alternative method is to sampleat the corners and center of each pixel.
This only increases the number of computations by a factor oftwo but requires increased overhead for
bookkeeping (since the samples from the previous row must bestored).

Standard supersampling can be performed accelerated by utilization of the accumulation buffer.

Rather than combining pixels with unweighted average a weighted filter can be used.

An example of the effect of anti-aliasing is seen in figure 7.5.

Figure 7.5: An example of the effect of anti-aliasing

50

7.4. MOTION BLUR

7.4 Motion Blur

Sources: [Elias, 2003a] and [Akenine-Möller and Haines, 2002]
Motion blur is an effect seen in images of scenes where objects are moving. It is mostly noticeable
when the exposure of the camera is long, or if objects are moving rapidly.

A camera works by exposing a light sensitive image plane to a scene, for a very short period of time.
The light from the scene causes a reaction on the image plane,and the result is a picture of the scene.
If the scene is changing during the exposure, the result is a blurred image.

Motion blur is seen in almost anything moving caught with a camera. But it is seldom noticeable, but
like many artifacts of images, its absence is noticeable. The presence of motion blur adds to the realism.

Additionally, an image with motion blur holds more information that one without. Compare the two
images in figure 7.6:

(a) (b)

Figure 7.6: An example of how motion blur gives information about the movement in the scene.

The two frames shows an identical scene, but in one the camerais travelling forward quickly, in the
other, the camera is moving to the left.

Motion Blur is very similar to anti-aliasing in images, where one method is to render an image in a
much larger version, than the requested result, then reducethe size by averaging groups of pixels into
one.

The method for creating smooth images is known as spatial anti-aliasing, and the method for creating
smooth motion in animations is known as temporal anti-aliasing. Temporal anti-aliasing is analogous
to anti-aliasing of images.

To achieve temporal anti-aliasing, the application must beable to create more images than needed
presented for the user. In the Augmented reality project, this means creating more images than the
camera can produce at the same time. If 8 times as many images as required for representation is
generated for one frame, a four second animation would require 800 frames to be rendered, given a
frame rate of 25.

The method is then to take the 8 intermediate frames that is used to create one frame, and mix them
together evenly.

51

CHAPTER 7. PRE- AND POST-PROCESSING

In an accelerated system this process can be performed usingthe accumulation buffer. Then the 8
frames could be added to the accumulation buffer each time a frame is rendered. This process is
however counterproductive in real-time rendering, because it obviously lowers the frame rate. But the
accumulation buffer can be utilised cleverly, and less costly.

If 8 frames of a model in motion has been generated and stored in the accumulation buffer, and then
displayed. At the ninth frame the model is generated again and accumulated, but at the same time the
first frame is rendered again and subtracted from the accumulation buffer. The buffer now has 8 frames
of a blurred image, frames 2 to 9. The next frame, frame no. 2 issubtracted and no. 10 is added. This
way only two renderings per frame is needed to continue to obtain motion blur.

7.5 Video Noise

Another artifact of the cameras inability to capture what itsees perfectly, is the graining in a picture
taken of a scene. The graining is among other things due to thecameras compression, imperfection in
the optics and CCD.

If a virtual object is superimposed on a real image or video feed, the things that reveals it to be virtual is
when it stands out from its surroundings, like if it is perfectly rendered, while the background is noisy
and grainy. Figure 7.7 shows an example with an object without and with noise added.

(a) (b)

Figure 7.7: An example of a virtual object in a real image (a) without and (b) with noise added to the image

The film grain is an important effect, that can help creating the illusion, that the camera is actually
recording the object that appears on the screen, even thoughit is virtual.

There are two approaches to using the film grain on the augmented image. The noise is either added to
the whole image or only the part of the image containing virtual objects.

It is desirable that there is a correlation between the noiseaffecting the virtual object and the noise
affecting the real objects. If the noise is different on bothparts of the image, the virtual object will still
stand out in the context of the image.

If the noise is applied to the entire image, it can be assumed,that there is a relationship between the noise

52

on the virtual image and real image. If the virtual noise is stronger than the noise on the real image, the
viewer will notice the virtual noise more than the real, and the virtual object will be appearing to have
the same noise as the background. To create the full screen noise, noise images can either be added to
the accumulation buffer per frame, or transparently textured to a full screen quad in front of the image.

The idea of creating virtual noise on the entire image has thetradeoff, that the entire image quality is
degraded as a result. The advantage is that if the noise images are pre-rendered the full screen quad
assures that the noise is not dependent on the camera resolution.

If the grain is only going to affect the virtual objects, the cameras noise must be simulated, if the noise
on the virtual object is to fit into the noise on the rest of the image.

One way to obtain the noise of the camera, is to shoot series ofimages with the camera, and analyse
how much each pixel varies over time. This information can beused to create a series of noise images
for the camera. Another way would be to extract a transfer function of the camera, which can then be
used to generate the noise.

One image of this series is the randomly chosen for each frame, and added to the accumulation buffer,
to simulate noise on the image. But the noise must only affectthe virtual objects of the image, so a
mask telling which parts are virtual and which are not is needed. To get this, the stencil buffer can be
utilised, which gives the silhouette of the object. This information is used to add grain only in the areas
marked by the stencil buffer.

Another way to create the illusion, that the virtual object is part of the image, would be to recompress
the image after the virtual part is added. The compression will affect both parts and the image may
appear as if its coming from the camera.

CHAPTER 7. PRE- AND POST-PROCESSING

54

CHAPTER 8
Modeling Real Scene Illumination

The purpose of this chapter is to evaluate methods for light estimation, and to infer usable methods for
this project. This in terms means a review of existing state of the art.

A critical problem when creating an augmented reality system, is to locate the light sources, that illu-
minates the scene. In terms of blending real and virtual objects, correct estimation of the physical light
sources is essential to how well the virtual object blends into the environment. The virtual light has to
illuminate the objects correct, and with the right intensity, and the shadows projected on the scene from
the light sources must also fall correctly, to maintain the illusion, that the virtual object is in fact part of
the real scene. If the setup of the virtual light is inaccurate, it will be possible to detect inconsistencies
between the real and the virtual parts of the image visually.

When modeling the illumination of a real scene, and applyingit onto virtual objects, there are three
steps that must be taken:

1. Measuring

2. Storing

3. Representation

To obtain information about the light sources, it can eitherbe found manually, by measuring the position
of the physical light sources, making a complete light modelof the scene, or by applying an image based
method to estimate the illumination of the scene.

To create a realistic light setup of the scene, it is necessary to gather the following information about
each light source in the scene illumination:

1. Intensity/color

2. Shape/size

3. Position

4. Direction

There are several ways to estimate the illumination of a scene from an image. [Sato et al.,] developed
a method to estimate the position and intensity of a scenes light sources by taking one photograph of a
diffuse ball. By analysing the illumination of the ball and the shadows it cast, multiple light sources of
a scene can be determined. For a project as this, a huge environment with multiple lights, estimating
it with the mentioned method is nearly impossible, as the lighting changes depending where in the
environment it is measured. At the same time the lighting of the scene changes dynamically over the
course of a day, and as the [Sato et al.,] method is an offline method it is not usable to estimate lights
in this scope.

55

CHAPTER 8. MODELING REAL SCENE ILLUMINATION

The manually measured model is not very efficient, as the dynamic lighting changes are difficult to
take into account. At the same time the calculations of such amodel must be considered very CPU-
intensive, and if it had to be dynamically updated, the application would be likely to have a very poor
performance.

8.1 Image-Based Lighting

Image-based lighting (IBL) methods, are used to produce realistic lighting effects in rendered images,
and to essentially replace the more traditional lighting setup. In this chapter a number of IBL estimation
methods will be examined.

8.1.1 Environment Map

To represent the surrounding environment in IBL, environment maps are utilized.

There are several ways of storing environment maps. In computer graphics two representations are
predominantly seen (Source: [LightWorks-User.com, 2004]):

Cubic environment maps: which are composed of six separate images that represent thesix orthogo-
nal directions in world space.

Spherical environment maps: which are composed of a single ’fish-eye-lens’ (i.e., extremely wide
angle lens) type image.

A Spherical environment map is a longitudinal/latitudinalmap of the surroundings seen from one point
in space. An example of a spherical environment map can be seen in figure 8.1.

Figure 8.1: An example of a spherical environment map.

56

8.1. IMAGE-BASED LIGHTING

8.1.2 High Dynamic Range Image

HDRI stands for High Dynamic Range Image. What is used in common picture file formats are LDRI,
or Low Dynamic Range Images. These traditional image formats represent a limited range of intensity
values for each pixel (most commonly 0 to 255 for each of the red, green and blue channels), sufficient
for on-screen images. High Dynamic Range Image formats allow a greater range of intensity values,
by using floating-point values for each pixel. This allows HDR images to be used to represent light
intensities present in the real world. The technique, knownas image-based lighting (IBL), is designed
specifically to produce realistic lighting effects in rendered images, and to essentially replace the more
traditional lighting setup. Source: [LightWorks-User.com, 2004].

8.1.3 Light probe

[Debevec, 1998] has developed a method for creation of an environment map, that use special probes,
which are typically highly reflective spheres. The method isto take pictures at different exposures of the
probe, from different angles, and extract a high dynamic range radiance angular map from the reflection
on the probe. The environment is "unwrapped" from the photographed sphere, and an angular map, as
seen in figure 8.2a, is created. The map can be used to create anirradiance map. From the assumption,
that the environment is far away, the angular map is utilizedto illuminate objects within the scene, as
seen in figure 8.2b.

(a) An example of an angular map used by
[Debevec, 1998] extracted from images of a light
probe.

(b) Objects illuminated with [Debevec, 1998] method.

Figure 8.2: The [Debevec, 1998] method

[Ramamoorthi and Hanrahan,] expanded upon the [Debevec, 1998] method by utilizing Spherical Har-
monics to create the Irradiance maps from the angular maps. Normally a computation of the irradiance
of an angular image is a very heavy process, therefore [Ramamoorthi and Hanrahan,] developed a
method to analyse the environment map, and create 9 spherical harmonics, which can be utilized to

57

CHAPTER 8. MODELING REAL SCENE ILLUMINATION

generate the irradiance map at very fast rates, at least 500 times faster, than the traditional irradiance
filtering.

8.1.4 Estimating point light sources from Environment Map

[Madsen et al., 2003] has developed a method for estimating the position and radiances for a small
number of point light sources from the analysis of an environment map. The method addresses the
problem of using IBL in real-time. The approach is to lower the number of light sources affecting the
scene. That is, to approximate the complex omni-directional lighting environment with a small number
of light sources, so the resulting virtual lighting resembles the real lighting of the scene.

The method analyses different exposures of the scene, and detects what areas are the most significant
in radiance, and what their position and intensity/color is. An example of how objects are illuminated
with this method can be seen in figure 8.3a.

(a) Spheres illuminated by the
[Madsen et al., 2003] method.

(b) The [Madsen et al., 2003] method used to cre-
ate shadows in the scene.

Figure 8.3: The [Madsen et al., 2003] method finds point lightsources, and use these to shade objects and create
their shadow.

The advantage of this method is that the lights of the environment can easily be estimated and repre-
sented real-time, and the estimated lights can be used to create shadows in the scene, as seen in figure
8.3b.

8.1.5 Rapid Shadow Generation in real-world lighting envir onments

[Gibson et al.,] created a new algorithm that uses consumer available hardware to render shadows cast
by virtual objects in a real lighting environment. The method shows how it is possible to generate soft
shadows from direct and indirect illumination sources and compositing them into a background image
at interactive rates. The method efficiently encodes how sources of light affects each point in the image,
by using a hierarchical shaft-based subdivision of line-space. This subdivision is utilized to determine
which light sources are occluded by virtual objects. By using facilities available on consumer-level
standard graphics hardware to display the shadows, the contributions from the occluded sources are
removed from the background. The method is a trade-off between rendering accuracy and rendering

58

8.2. THE APPLIED METHOD FOR THE SYSTEM

cost, and converges towards a result that is subjectively similar to what can be obtained from ray-tracing
based differential rendering.

The scene is subdivided into multiple patches, and in a pre-process all intensity transfers between
patches are calculated. If a virtual object intersects the shaft between source patches and receiving
patches. The intensities of the receiving patches are reduced by the intensity that it gained from the
source patch, that is occluded.

(a) (b)

Figure 8.4: A virtual chair (a) and bunny (b) is moving aroundreal-time, while photo-realistic shadows are cast.
[Gibson et al.,]

The shadow generation process proposed by [Gibson et al.,],is a coarse evaluation of where shadows
are cast, and then a fine-level evaluation, that allows quickconstruction of the shaft hierarchy using a
small amount of memory.

8.2 The Applied Method for the system

This chapter explores which solutions exists to shade virtual objects based on an image extracted from
the surrounding environment. In table 8.1 the advantage/disadvantage of the examined methods is
listed.

Advantages Disadvantages
[Debevec, 1998] Photo-realistic Does not find position of light-sources

[Madsen et al., 2003] Fast Models only the most significant lights
Usable to create shadows

[Gibson et al.,] Fast soft shadow generation
Photo-realistic

Table 8.1: Advantages and disadvantages for each proposed method

For the lobby-scene, which is the scene that will be augmented for this project, the lighting conditions

59

CHAPTER 8. MODELING REAL SCENE ILLUMINATION

are changing temporally, as well as spatially. The spatial changes in the lighting means that the assump-
tion from [Debevec, 1998], that the environment is far away and does not change if an object is moved,
no longer applies. The correct position, size and intensityof the lights affecting the objects must be
estimated, in order to create a proper effect, when objects moves around.

To this end, a priori knowledge of the environment is required. If an environment map was used in con-
junction with a 3D model of the environment, the position could be found by mapping the environment
map onto the 3D model, from the position it was recorded in thereal scene, that is.

The [Madsen et al., 2003] method can be applied here, where itnormally finds the angular position in
regards to the point of environment map-recording, but not the exact distance to the light source, the
combination with a 3D model, could shoot a ray in the direction found by the method. The first piece
of geometry hit, is likely the position of the light source. This information can be used to create the
shadows of the scene.

To estimate the position, size and intensity of possible light sources in the lobby-scene, the project will
combine an environment map with a 3D geometric model of the lobby-scene. The environment map
will be processed for possible areas, that provides light tothe scene, while the rest will be thresholded
away. This thresholded environment map will then be mapped onto the geometry. The geometry that
has received a texture from the environment mapping, that isnot filtered to black, are the possible light
sources, where position, size and intensity is known for allof them.

8.3 Creating an environment map

In this project, Image Based Lighting (IBL) methods will be analysed, and an environment map will be
created of the lobby-scene, augmented in this project. Thisenvironment map will be used to light the
virtual objects, and cast shadows. To obtain this the environment map itself can either be used to shade
the virtual objects or light sources can be estimated from the environment map.

The task of mapping a series of planar images to a sphere involves a warping, based on camera orien-
tation, and a equirectangular mapping from the sphere to a planar latitude/longitude map. Normally,
when creating environmental images, they would be manuallyplaced. In this project tracking data for
the camera orientation is available, hence we are able to automatically place and warp the images into
the environment map.

8.3.1 Image warping

The process of projecting a series of planar images with a known field of view (FOV) onto a sphere is
shown in Figure 8.5. It is assumed that the input images are rectilinear, which is a reasonable assump-
tion, when images have been undistorted, as described in section 5.1 on page 39.

In Figure 8.5 the parameters used in placing the image are shown. φ, θ, andψ (or azimuth, elevation,
and roll) are Euler angles.f is the focal length, which is obtained during camera calibration. Based on
the Euler angles a directional vector,~d, of lengthf is calculated. This will be the basis of the following
projection.

From the tracking, described in chapter 6 on page 43, we have two parameters describing the orientation
of the camera, a target vector,~t, parallel to the cameras optical axis and a vector,~u, in the up direction.
From these parameters the 3D coordinates of pixels in the input images can be found by calculating a
local coordinate system for the image, which is comprised bythe two unit vectors~iu and~jv.

60

8.3. CREATING AN ENVIRONMENT MAP

tv

d
r

c
r

f

ψϕ

θ

Figure 8.5: The process of creating an image mosaic. A seriesof planar images are mapped to a sphere.

~d = f

(

~t
∣

∣~t
∣

∣

)

(8.1)

~iu =
~d× ~u

|~d× ~u|
(8.2)

~jv =
~u

|~u|
(8.3)

The result of equations 8.1 and 8.2 are shown in Figure 8.6.

→

d

→

ui

→

vj
tv

tu
image

→

c

Figure 8.6: Pixel positions in three dimensions, taking into account roll, are found and mapped to a sphere.

When~iu and~jv are known, the angular position in the latitude/longitude environment map is calculated
for each pixel in the input image, using equations 8.4 and 8.5.

~dnew = ~d+~iu · pu +~jv · pv (8.4)

61

CHAPTER 8. MODELING REAL SCENE ILLUMINATION

(θ, φ) =



tan−1

(

~dnew.z

~dnew.x

)

, cos−1





~dnew.y
∣

∣

∣

~dnew

∣

∣

∣







 (8.5)

The final step in creating the environment map is to assign thefound angles to the longitude/latitude
map.

8.3.2 Longitude/latitude conversion

Given an environment map with a dimension ofpu horizontal pixels, andpv vertical pixels, the conver-
sion from longitude,θ and latitude,φ, to any given pixel position is given as:

p(u, v) = (
pu

2π
· θ ;

pv

π
· φ) (8.6)

An example of a spherical environment created with this method can be seen in Figure 8.7

Figure 8.7: An example of a spherical environment map.

8.4 Mapping environment to Geometry

Considering equation 8.6 reveals that in order to successfully map an environment map to the geometry-
textures of a given scene, there are a some of factors that must be known. The position in the scene
from where the environment map is recorded. How the azimuth orientation on the environment map
in regards to the models orientation is. Both are factors that needs to be measured when recording an
environment map of the scene, though they may be estimated bycomparison of the model and the map
afterwards.

There are two approaches to map an environment map to geometry. One approach is to run through
each pixel on the environment map, and from the maps center ofprojection, the point in space the map
was created from, rays are shot into space and the first geometry hit, is assigned that pixel. The second

62

8.4. MAPPING ENVIRONMENT TO GEOMETRY

approach is to create unique textures for each face in the scene, by finding the 3D position of each pixel
in each texture on each face, and determining which longitude/latitude coordinate in the environment
map corresponds to that position.

For this project, the latter solution has been pursued, because it assures all surfaces are assigned some
sort of value, which can be used to extract the lights later, the calculation from 3D coordinate to a
longitude/latitude coordinate is as well a useful one, thatwill be used later in the project.

First the conversion from spherical coordinates to 3D coordinates is utilised:

x = r · cosθ · sinφ

z = r · sinθ · sinφ

y = r · cosφ

Here the z and y coordinates are switched in regards to the conventional notation of spherical coordi-
nates, which is a consequence of the fact, that in computer graphics, y and z are switched with respect
to conventional math, to maintain x-y as the screen coordinates.

θ andφ are the only interesting parts of the spherical coordinatesas they according equation 8.6 are
the information needed to acquire the(u, v) coordinates in the environment map. If the 3D position of
the environment maps center of projection is set as an offsetvector~o, and the 3D position that is to be
converted to longitude/latitude coordinates is~p, the direction~p lies in, in regards to the offset~o can be
found by calculating:

~p0 = ~p− ~o (8.7)

This operation resets the 3D point to be oriented in regards to the origin(0, 0, 0). When this has been
performed,r can be found by calculating the length of~p0.

To findφ andθ the following applies:

φ = cos−1(
~p0.z

|~p0|
)

θ = tan−1(
~p0.y

~p0.x

)

When a vector is written with a suffix like~p0.x, it means the x-component of the vector~p0

Combining these with equation 8.6, yields the calculationsto get the longitude/latitude coordinates in
an environment from an arbitrary point in the 3d space:

p(u, v) = (
pu

2π
· tan−1(

~p0.y

~p0.x

) ;
pv

π
· cos−1(

~p0.z

|~p0|
)) (8.8)

8.4.1 Coordinate transformation

The problem of finding a proper texture for an arbitrary planeexisting within the scene is to remap
between 3D coordinates and 2D coordinates. This may be solved by coordinate transformation. The
principal of coordinate transformation is to have one coordinate system and map it onto another.
In this project the planes are represented by three points in3D space(~p1, ~p2, ~p3). An example of a plane
may be seen in figure 8.8a.

The plane may be described with axes derived from the 3D points of the planes. Furthermore, the two
axes may be described by the vectors spanned from point p2 on figure 8.8a where:

63

CHAPTER 8. MODELING REAL SCENE ILLUMINATION

(a) A 3D plane represented by three coordinates. (b) Vector ~v1 and ~v2 derived from points~p1, ~p2 and ~p3.

Figure 8.8: The coordinate transformation for an arbitraryplane in space consisting of 3 points

~v1 = ~p1 − ~p2

~v2 = ~p3 − ~p2

Vector ~v1 and ~v2 can be seen in figure 8.8b.

The "horizontal" (~v1) resolution is equivalent to the "vertical" (~v2), and is denoteds. The half unit
length of the vector is calculated in equation 8.10 and equation 8.10. The half unit length is used in
order to address the center of the pixel.

~vx =
~v1

2 · s
(8.9)

~vy =
~v2

2 · s
(8.10)

The 3D position of the pixels within the face, which map thex andy position in the texture may be
found using~vx and ~vy. If the vertical pixel position on the texture is denoted byx, and the horizontal
is denoted byy, then the 3D position~p of any pixel on a texture described by the three points may be
found with:

~p(u, v) = (2 · x− 1) · ~vx + (2 · y − 1) · ~vy + ~p2 (8.11)

Combining this with equation 8.8 on the preceding page, can be used to create exact textures on any
arbitrary face in a 3D scene.

Example:

In this example the resolution of the texture is10 × 10, see figure 8.9 on the next page, therefore s is
10. ~v1 and ~v2 are scaled down to~vx and ~vy as seen in the figure. To find the pixel at(4, 7) the vector
~p(4, 7) is calculated using(2 · 4 − 1) · ~vx + (2 · 7 − 1) · ~vy + ~p2.

64

8.5. UPDATING AN ENVIRONMENT MAP

Figure 8.9: Vector~vx, ~vy and the vector to the point u=4 and v=7.

When dealing with a complex environment, such as the lobby-scene used in this project, occlusion of
surfaces is a common problem. There are a number of solutionsto get past this problem, where the
simplest is to ignore occlusion, and map the environment to the surfaces that are in fact occluded from
the environment map. Another solution is not to map anythingto the occluded surfaces, and find their
color by interpolating between the closest faces that received color. Furthermore the occlusions can be
reduced by recording multiple environment maps from the same environment and combine these in the
mapping process.

8.5 Updating an Environment Map

When updating an environment map from a dynamic lighted scene, several solutions has been consid-
ered.

One way is to record a set of environment maps from the scene, at different times of day, with different
lighting, dependent on the weather. This set of environmentmaps are templates of different lighting
conditions. To utilise these templates the system would have to analyse the images it is acquiring and
determine which of the templates matches the lighting best,and switch to that environment map in the
scene. When the scene lighting has changed enough to be visually different from the current employed
environment map, set by a certain selection criteria value,the system chooses a new environment map
that fits the best, and gradually changes the derived virtuallighting in the scene to this new setting.

Another way would be to utilise the [Debevec, 1998] method, by having a metal sphere in the scene, and
a secondary camera that records it. The information from theprobe is used to extract light information,
which is used to update the virtual lighting of the scene.

Furthermore it is possible to create one environment map of the scene, recorded from the center of the
scene, as the only one used in the system. During execution ofthe system, the camera is in placed an-
other position than when the environment map was recorded. Therefore it will be necessary to calculate
which parts of the environment map recorded from the center fits the different part of the images visible
from the camera viewpoint. If rays are shot out through the pixels into the room from the cameras
position, certain 3D points are obtained in the places, where the rays intersect scene geometry. if these
3D points are used in conjunction with equation 8.8 on page 63it is possible to find out which pixel
values in the initial environment map they represent. The pixels from the shoot rays are compared to

65

their correspondent in the environment map. When the difference between the pixels obtained from the
camera, and the pixels in the environment map is above a certain set threshold, the mean difference is
calculated, and the environment is updated with this difference, and it will thereby look as much as the
environment, as possible by changing the intensity.

The lobby-scene is a very dynamic environment, lighting-wise, and creating a precise real-time dynamic
update of an environment map, is an entire project on its own.For this project the problem of handling
the dynamic environment changes will be detecting major changes in the environment, and adapt to
them using the latter described method.

The implementation will evaluate the lighting of the scene,by taking chunks of the images from the
camera, and calculate which areas in the environment map used for the illumination is the equivalent
to the chunks obtained from the camera. These will be compared, and the overall intensity difference
between the two areas is calculated. This process will be performed at different angles of the camera,
and when a certain percentage of the map has been covered, theaverage intensity difference of these
areas is calculated. This calculated intensity differenceis used to adjust the brightness of the virtual
objects that are rendered to the screen. In the system this brightness adjustment will be performed by
changing the albedo value of the objects.

CHAPTER 9
Illuminating a scene

This chapter extends on the uses of light estimation, described in the previous chapter. This chapter
analyses different algorithms for shading and shadowing objects.

When the right position, shape and intensity of the lights affecting the real scene has been estimated,
the next step is to use this information to shade and shadow the virtual objects correct, so they do not
seem out of place, at least not because of the lighting.

Light is electromagnetic energy, and is the part of the spectrum, that is visible. A photon is the basic part
of light, and is a discrete quantum of light energy. A mediumsindex of refraction sets which velocity
photons can be transmitted from it, the mediums index of refraction varies with the wavelength of the
photons. The mediums surface properties dictates a photonsbehavior, when intersecting it, the medium
can either reflect, refract or absorb the photon. Most mediums reflect photons at certain wavelengths,
and absorbs at others, this is what causes surfaces to have a certain color.

To simulate light hitting a surface satisfactory, the effect of light and its interaction with materials must
be processed. In computer graphics this simulation is however simplified to shading models, that is not
completely physical correct, but yields a visually realistic result. This chapter deals with such models,
in order to choose which is to be used to shade the virtual objects of the project.

Another important factor in creating realistic looking graphics are the shadows the objects are cast-
ing. In real time computer graphics, complex realistic shadows are difficult to create convincingly, but
numerous attempts has been made, where some of them is described in this chapter.

One of the early attempts at creating shadows included a patch of darkened texture, normally round in
shape, that projected onto the floor below the shadow-casting objects. This approach is called "shadow
blob" but is seldom used anymore as they are not very aesthetically pleasing to the realism of a given
scene.

Normally a light source may be simplified to being a single point in space, from where light emits.
But when mixing real imagery with computer generated imagery this simplification poses problems.
A point light source will always give hard shadows, meaning the border between what is in shadow
(umbra) and what is not in shadow, will be hard. While these hard shadows may look good in some
applications they are not realistic looking, and when mixedwith real imagery these shadows will look
fake in comparison. The traditional computer generated shadows created from point light sources lacks
a penumbra area, an area that marks a soft transition betweenthe umbra area and the fully lit area.
Many algorithm exists to do this, but the real time application of soft shadows has been limited for
many years, as it is a heavy process.

There are 4 different main groups, in which to classify lightsources within the field of computer graph-
ics. Directional, positional, spots and area light. The three first, are simplified versions of real life
lighting, while Area light is the class all physical light sources belongs to. For this project, the area
light is estimated, as seen in the previous chapter, and therefore lighting methods utilizing area lights
are the only ones considered in the following chapter.

Area lights emit light energy in all directions from their surface, which can take any shape or size.

67

CHAPTER 9. ILLUMINATING A SCENE

Simulating area light is slightly more complicated, than the other groups of light mentioned. This is
due to the fact that any physical object has an infinite numberof points on its surface theoretically, from
where photons are emitted. So by simulating area lights, is equivalent to simulating an infinite number
of point lights placed within the bounds of an object. The common approach to this problem is to place
a finite number of light sources evenly across the surface of the lighting object.

The following sections evaluates various illumination techniques and takes a look at which solutions
yields realistic visualisation of the virtual objects.

Lighting and shadow casting algorithms can be very roughly divided into two categories; Direct Illu-
mination and Global Illumination.

9.1 Direct Illumination

Direct Illumination is a term that covers the classical lighting methods. A scene consists of two types
of entity: Objects and Lights, the lights cast light onto theobjects, unless there is another object in the
way, in which case a shadow is cast.

There are various techniques in this category: Shadow Volumes, shadow mapping, Ray Tracing. But
they all suffer from similar problems, see table 9.1.

Method Advantages Disadvantages
Ray Tracing - Can render both mathematically de-

scribed objects and polygons
- Slow

- Allows rendering of advanced volu-
metric effects

- Very sharp shadows and reflec-
tions

Shadow volumes - Can be modified to soft shadows - Complex implementation
- Very sharp shadows
- Polygons only

Shadow mapping - Light implementation - Sharp shadows
- Fast - Aliasing problems

Table 9.1: Problems and advantages for direct illumination(Source: [Elias, 2003b])

Direct illumination is not a realistic way to mimic the characteristics of real-world lighting. These meth-
ods can produce realistic images, but they can only do this when given a scene with point light sources,
and perfectly shiny or perfectly diffuse objects. In the real world, it is possible to see objects that are
not directly lit by light sources, shadows are never completely black. Direct illumination handles this
relation by adding an ambient light term. Thereby all objects in a given scene receives a minimum
amount of uni-directional light. In the lobby-scene project all surfaces are already naturally lit, so if
these direct illumination algorithms can be extended to create soft shadows, they may be enough to fool
the viewer into thinking of the as realistic shadows.

9.1.1 Shadow mapping

Source: [Kilgard, 1997]
The basic idea in Shadow mapping is to put a camera in the position of the light source, and let it
record depth information from that point of view. This depthinformation is then compared to the depth

68

9.1. DIRECT ILLUMINATION

information from the users viewpoint, and it is possible to ascertain which areas of the scene that is in
shade, and which areas are not.

The algorithm is described with simple pseudocode:

Pseudo code 9.1The creation of shadows using depth comparison.
1. Render scene from the light-sources point of view.
2. Store depth values of the closest fragments in a texture.
3. Project depth texture, which is the shadow map, onto scene.
4. Render scene from cameras point of view.
5. At each fragment, compare the projected depth texture with the current depth buffer.
6. If two compared depth values are the same the area is not shadowed.

This method has a number of trade-offs:

Finite resolution

The detail level of the shadows are dependent of the resolution the shadow map has been recorded with
the camera. The lower the resolution the shadow map was recorded with the more pixelated the shadow
will be. To utilise shadow maps one would be forced to make a trade-off between performance and
shadow details.

Aliasing

As the recorded depth map is a discretely sampled map from both the light and view-port, there may
be areas where artifacts such as an object self-shadowing inplaces that should have no shadow. This
problem however is solvable if shadow mapping were to be utilised.

9.1.2 Shadow Volumes

Source: [Akenine-Möller and Haines, 2002]
Shadow volumes is one of the most commonly used real-time shadow casting algorithms today.

The idea behind shadow volumes is to cast shadows onto arbitrary objects by clever use of the stencil
buffer. From a given point in space, which is the point light source, a volume is created by finding
the silhouette of the object that is to cast a shadow, and extruding a 3D volume from the light source
through the silhouette points, towards infinity. The part ofthe volume that is on the other side of the
light occluding object than the light, is a volume of the shadow, the object will cast. The volumes
themselves are purely theoretical, and thus invisible to the camera in the scene.

The implementation of the Shadow Volume method is to follow aray through each pixel until the ray
hits visible objects on the screen. While the ray is on its wayto this object, a counter is incremented
each time it crosses a front facing face of a shadow volume, meaning the counter is incremented each
time the ray goes into a shadow. Each time the ray crosses a back facing face of the volume, the counter
is in the same way decremented, to signify that the ray is outside a given shadow. When the ray hits the
object to be displayed, the counter is checked. If the numberis greater than zero, the pixel is in shadow,
and otherwise it is not.

69

CHAPTER 9. ILLUMINATING A SCENE

Shadow Volumes creates very sharp shadows, but the algorithm can be tweaked to create soft shadows,
which has been done by [Vignaud, 2001] and [Andersson and Akenine-Möller, 2003].

9.1.3 Shaking the light makes soft shadows

[Vignaud, 2001] developed a method to use ordinary direct illumination hard shadows, and extended
them to be soft shadows. The technique is simple, for each frame, the light casting the shadows is
"Shaken". The basic idea is to display the shadows while shaking the light, and to blur them together.
Normal hardware is not fast enough to display that many volumes at the same time, so time coherency
is used to fake it. During one frame,the current volume is displayed, and blurred with the volumes of
the previous frames. To shake the light, it is positioned at different positions around the center for each
render pass per frame.

9.2 Global Illumination

In global illumination methods the problems associated with local illumination is addressed. Classic
ray-tracers simulates light reflecting only once off each diffuse surface, with global illumination the
many reflections of light bounces around a scene are simulated, to create a more realistic virtual light.

Each object in a ray traced scene must be lit by a light source for it to be visible, in a globally illuminated
scene an object may be lit simply by it’s surroundings.

When light hits a surface, some of the light is absorbed, and some is reflected. The surface properties
of the object determines how much light is reflected. Surfaces that has been illuminated acts as light
sources themselves, when they reflect light, light sources with reduced intensity. Classic ray-tracing can
not be used to simulate global illumination, because ray-tracing only handles point light sources. So to
perform global illumination with classic ray-tracing eachemitting surface must be subdivided into an
infinite amount of point lights. This means that diffuse surfaces becomes an infinite number of point
lights when illuminated, and illuminating other surfaces from those point lights becomes difficult.

9.2.1 Bidirectional Reflectance Distribution Function

Source: [Akenine-Möller and Haines, 2002]
A Bidirectional Reflectance Distribution Function (BRDF) is a function that describes how light is
reflected from a surface, it is used to describe material properties. Input to the function is incoming and
outgoing azimuth and elevation angles, as measured on the surface. The wavelength of the incoming
light is another input, which is equivalent to the color of the light.

The BRDF returns a unit-less value that signifies the amount of energy reflected in the outgoing direc-
tion, based on the incoming direction.

The BRDF is a relation between incoming and outgoing radiance, but does not explain how materials
physically interacts with light.

An important property of the BRDF is theHelmholtz reciprocity, which states that the input and output
angles can be switched, and the function value will remain the same.

The BRDF is an abstraction that describes how light interacts with a surface, but it is also an approxima-
tion of a more general equation, the Bidirectional Surface Scattering Reflectance Distribution Function
(BSSRDF). The BRDF does not include the scattering of light within the surface, which can be seen

70

9.2. GLOBAL ILLUMINATION

in e. g. marble. BSSRDF includes these properties, but only handles reflections of light, not trans-
mission of light through the surface. This can be handled with two BRDF’s and two BTDFs (T for
Transmittance), by defining one of each to the two sides of thematerial, which makes the BSDF (S for
Scattering).

With a BRDF and an incoming radiance distribution, the reflectance equation gives the outgoing ra-
diance for a given viewing direction, relative to the surface. This is done by integrating the incoming
radiance from all directions on the hemisphere on the surface:

L(θo, φo) =

∫ ∫

Ω

f(θo, φo, θi, φi)L(θi, φi)cos(θi)dσ(θi, φi) (9.1)

Subscripti ando are the incoming and outgoing (view) directions. TheL function is the radiance trav-
eling in a given direction, andf is the BRDF. The integrals means to integrate over the local hemisphere
Ω for the surface. The utilization of the equation is for all directions on the surface to determine the
incoming radiance multiply it with the BRDF for the incomingand outgoing directions, scale it by the
incoming angle to the surface, and integrate. The result of this operation is what radiance is seen for a
given viewing direction.

The Lambertian BRDF is the ideal diffuse, which can be used tomodel the appearance of rough sur-
faces, with the characteristic that they reflect light equally in all directions, see figure 9.1.

surface

→

n

df

→

iω

Figure 9.1: The Lambertian BRDF. Surfaces with this BRDF scatters light equally in all directions.

The Lambertian BRDF is given by:

fd(~ωi, ~ωo) =
ρd

π
(9.2)

This equation is independent of both~ωi and ~ωo, the constantρd is the reflectance, or albedo, and ranges
from 0 to 1.

The counterpart to the diffuse BRDF is perfect specular BRDF. The ideal specular BRDF models per-
fectly smooth surfaces. This surface reflects all light in exactly the exact mirror direction, as in figure
9.2.

The specular BRDF is given by:

fs(~ωi, ~ωo) =

{

ρs ~ωr = ~ωo

0 ~ωr 6= ~ωo

(9.3)

whereρs is the specular reflection (in the range 0 to 1).

71

CHAPTER 9. ILLUMINATING A SCENE

→

iω

surface

→

sω

sf

→

n

Figure 9.2: The perfect specular BRDF. Surfaces with this BRDF scatters light only in the mirror direction

In appendix B on page 129 Lambertian shading is described in detail.

9.2.2 Global Illumination Algorithms

A number of algorithms that simulates global illumination exists, but are all very computationally de-
manding. But during the past years global illumination algorithms has become more common in appli-
cations as the processing power available on consumer-level hardware has grown.

The big trade-off of global illumination is the speed. The multiple Global illumination calculations of
a given scene makes the methods slow.

To exemplify the difference between global and local illumination the two approaches has been utilised
to lit the scene seen in figure 9.3.

The scene is lit from outside, so the room would look as if it was lit by the sun shining in through the
window. In the local illumination version, a spotlight is set to shine in. The parts that are not lit by the
light can be lit by the ambient light, which will give the restof the room a uniform look. To bring out
the details the room is lit with an additional point light source in the middle of the room in figure 9.3a.
The room is rendered using a ray-tracer.

In figure 9.3b global lighting is added. The source of light isa rendered image placed outside the
window. The rendering is performed with a radiosity renderer.

The differences from the ray-traced image is apparent:

Light bounces on surfaces, lights the entire room.

Soft shadows.

Color bleed.

9.2.3 Radiosity

Source: [Elias, 2003b]
Radiosity is a technique that calculates the lighting in a complex diffuse-lighting environment, based on
the scene’s geometry. Because the radiosity calculations do not include the eye point of the viewer, the
geometry and lighting in the environment do not need to be recalculated if the eye point changes. This

72

9.2. GLOBAL ILLUMINATION

(a) A scene lit with local illumination. (b) Same scene lit with global illumination.

Figure 9.3: Comparison of local and global illumination. [Elias, 2003b]

enables the production of many scenes that are part of the same environment, and a "walk through" the
environment in real time.

The amount of light in the scene is constant - light which is emitted is always absorbed somewhere.
Every object is subdivided into many, many patches (or polygons). Each patch has a specification
telling the system how this patch will affect other patches,that is, how it reflects light.

The calculation of radiosity is based on static objects.

9.2.4 Irradiance Volume

Source: [Greger et al., 1995]
Irradiance Volumes is an approximation to global illumination in a scene. Irradiance volume is a vol-
umetric representation for the global illumination withina space based on the radiometric quantity
irradiance. The irradiance volume provides a realistic approximation without the amount of calcula-
tions needed with traditional global illumination algorithms. The method, that analyses the surrounding
scene, samples it and approximates how the lighting conditions are in various key points in the scene.
When a volume of such samples has been created, a random object can be shaded with a lookup in the
volume.

The volume tells how the global illumination of the scene is affecting dynamic objects.

9.2.5 Monte Carlo Rendering

Source: [Shirley, 1998]
Monte Carlo Ray Tracing, or sometimes mentioned as path tracing, is a Monte Carlo Technique. For

73

CHAPTER 9. ILLUMINATING A SCENE

a particular light source configuration, the reflected lightis computed utilizing Monte Carlo integra-
tion. In Monte Carlo Integration random points are picked over some simple domainD′, which is
representing a complicated domainD.

Classic path Tracing performs performs this integration over the entire hemisphere for a surface, in
order to take direct and indirect illumination into account. Monte Carlo Ray Tracing uses Monte Carlo
Integration to simplify the hemisphere integration.

The advantages/disadvantages for various global illumination methods may be seen in table 9.2.

Method Advantages Disadvantages
Radiosity Realistic light for diffuse surface Slow

Simple concept, easy implementation Bad point source handling
Can be accelerated with 3D hardware Bad handling of shiny surfaces

Monte Carlo Very good results Slow
Can simulate all optical phenomena Slightly difficult

Tricky to optimise
Irradiance Volume Good results Does not handle specular reflec-

tion
Fast

Table 9.2: Problems and advantages for global illuminationmethods.

9.3 Illumination algorithms used for the system

In this project the various shading methods will be used to shade a virtual object set in a real scene. To
accomplish the task of merging the real and the virtual partsof the image, the real image must affect
the virtual object, and the virtual object must affect the real scene.

The virtual object must be shaded according to it’s surroundings in the image. The virtual object and
real objects must also affect each other with their shadows,for the illusion to be convincing.

In this project, the lighting of the surroundings is not calculated, but measured with an environment
map.

Radiosity and Monte Carlo rendering are two ways to calculate the light bounces of a scene. In the
lobby scene the lighting is already handled naturally, so these methods can be used to calculate the how
the shadows from the various light sources, measured from the real scene, acts in the scene.

Both Radiosity and Monte Carlo rendering are traditionallyoffline methods, that calculates the lighting
of the scene in advance. This means they normally only handles static scenes with static objects. If an
object is dynamic the updating of the calculated environment must be dynamic as well. [Gibson et al.,]
created a method to use pre-calculated trajectories for thelights paths to real-time show soft shadows
generated from the environment. The various sources show that radiosity is a faster algorithm than
Monte Carlo that still yields convincing shadows. A very important demand to the resulting system of
this project is that it runs real-time. Therefore the project will make use of the idea behind radiosity to
create soft shadows in the environment, based on dynamic objects within the scene.

The radiosity can not shade dynamic objects unless it is possible to make advanced radiosity calcu-
lations for each frame. Therefore another algorithm is needed to shade the dynamic objects of the
scene.

74

Irradiance Volumes was originally created as a supplement to global illumination algorithms. The
Irradiance Volume method calculates the lighting of an entire virtual scene in advance. The irradiance
volume method then analyses the scene, and shades objects accordingly. This is a very fast method to
shade objects based on their surroundings.

In this project the lighting of the real scene is measured, bycreating an environment map of the sur-
roundings. If the irradiance volume is tweaked to sample theradiance from such an environment map,
it can be used to shade the virtual objects in the scene, so they match up with the lighting of the sur-
roundings.

CHAPTER 9. ILLUMINATING A SCENE

76

CHAPTER 10
Irradiance Volume

This chapter explores the Global Illumination approximation algorithm called Irradiance Volume. Irra-
diance Volumes is an approximation to global illumination in a scene. Irradiance volume is a volumetric
representation for the global illumination within a space based on the radiometric quantity irradiance.
The irradiance volume provides a realistic approximation without the amount of calculations needed
with traditional global illumination algorithms. The method, that analyses the surrounding scene, sam-
ples it and approximates how the lighting conditions are in various key points in the scene. When a
volume of such samples has been created, a random object can be shaded with a lookup in the volume.
The basic assumption of the irradiance volume is that the objects the irradiance volume shades, do not
themselves affect the lighting of the scene.

Source: [Greger et al., 1995]
A realistic image synthesis has always been a major goal in the field of computer graphics. One such
realistic synthesis is the concept of global illumination,as opposed to local illumination. Traditionally
global illumination accounts for light interaction between surfaces in an environment, so both direct
and indirect light sources are taken into account. These global illumination algorithms provide realistic
effects but often at the price of computational expense.

A method to create the effect of global illumination exists,that makes a reasonable approximation with
high performance, which is called Irradiance Volume. This is used in many applications where the
visual appearance is more important than the accuracy of thegenerated illumination.

The visual appearance of a scene with diffuse surfaces can becomputed from the reflectance and irra-
diance at the surfaces.

In irradiance volume the concept of irradiance from surfaces is extended into enclosure. The irradiance
volume represents a volumetric approximation of the irradiance function. The volume is built in a pre-
process step, and can be used by an application to approximate the irradiance at a given location within
the environment quickly.

10.1 Radiance and Irradiance

Radiance is the density of light energy flowing through a given point in a given direction. The luminance
is the point viewed from a certain direction. The radiance inall directions at a given pointx makes a
directional function called the radiance distribution function (RDF). There is a RDF at every point in
space, which is why radiance is a five-dimensional quantity defined over all points and directions, two
directional and three spatial.

The reflective properties and the incident radiance of a surface determines its outgoing radiance. The in-
cident radiance of the surface is defined by hemisphere of incoming directions called the field-radiance
function (FRF).

If a surface is diffuse then its radiance is defined by the terms of the surface irradiance,H:

77

CHAPTER 10. IRRADIANCE VOLUME

H =

∫

Lf (ω)cosθ dω (10.1)

Lf is the field radiance incident from directionω, andθ is the angle betweenω and the normal vector
ñ of the surface.

If the radiance from all incoming directions to one point is sampled, it can be computed into the ir-
radiance for all possible orientations, these irradiancescan be plotted as a radial function. This is the
irradiance distribution function (IDF) for a given point. This IDF can be computed for every 3D point
in a given scene. A complete IDF is not practically possible,as it would demand sampling in a very
high amount of directions and points, and the computationalrequirements are equally high. For high
efficiency the IDF is approximated.

If the IDF is approximated within the space enclosed by an environment in a form that can be evaluated
quickly, the costly explicit evaluation of the IDF, for eachtime an object moves, can be avoided. This
approximation is the irradiance volume, and the assumptionis that it is possible to approximate the IDF
with enough accuracy to avoid visual artifacts.

The simple way to approximate the function is to evaluate a finite set of points, and use interpolation to
determine the function between them.

10.2 Creation of an Irradiance Volume

Irradiance volumes must be used in conjunction with an existing lighting solution, as it samples the
radiance in the lit environment. Radiosity could be one of such solutions. To built the irradiance
volume the possibility to sample radiance at all points in all directions must exist. For a geometric
environment built of polygons the sampling can be achieved with ray-casting techniques.

The traditional implementation of the irradiance volume, involves a grid of samples being spanned in
the environment in which objects are to move. The sampling isperformed uniformly in the directional
dimensions, since the IDF in a point is always continuous. The spatial dimensions are a bilevel grid for
adaptive sampling, the reason for this, is that speed is the primary concern rather than accuracy.

The pseudo code for the computation of the grid is:

Pseudo code 10.1The creation of an irradiance volume grid
1. Subdivide the bounding box of the scene into a regular grid.
2. For any grid cell that contains geometry, subdivide into afiner grid.
3. At each vertex in the grid, calculate the irradiance distribution function.

The subdivision of cells containing geometry, is to alleviate the most likely source of errors in the
irradiance interpolation, since most discontinuities arecaused by interruptions of light flow by surfaces.
The bilevel grid allows low density sampling in open areas, while a higher sampling is possible in
regions with geometry.

The first-level grid will be a3×3×3 grid that is built within the environment. Any grid cell containing
geometry is then subdivided into a second-level3 × 3 × 3 cell. The regular grid outer vertices must be
placed slightly within the boundaries of the environment sothey do not intersect pieces of geometry.
An illustration of a grid/cell/sample structure is seen in figure 10.1.

To approximate the IDF at an arbitrary point in a scene, the following procedure is utilised:

78

10.2. CREATION OF AN IRRADIANCE VOLUME

grid

subgrid

cell

sample

Figure 10.1: A grid is the overall structure of the storage ofthe irradiance volume. A grid contains cells. Each
cell can either contain samples at its corners, or a new sub-grid-level, which contains sub-cells.

Pseudo code 10.2The creation of an irradiance volume sample
1. Given a directional sampling resolution, choose a set of directions over the sphere of directions in
which to sample the radiance.
2. In each chosen direction, determine and store radiance.
3. Use the stored radiance to compute the irradiance distribution function.

This is performed for each grid vertex, to form the irradiance volume.

To gather the radiance viewed from a point in space, the radiance is point sampled in a set of directions
over the spherical set of directionsS2(θ, φ). Each sample defines a region of constant radiance overS2.

To represent the sphere of directionsS2, [Shirley and Chiu, 1994] provides a method to map a unit
square to a hemisphere, and preserving the relative area of regions on the square. With this procedure,
all directions represent an equal area on the hemisphere, which gives a mathematical advantage in the
later calculations. This representation is better than thetraditional longitude-latitude mapping, because
mapped areas have better aspect ratio. The actual implementation will include two such hemispheres
for each sample, to create one complete sphere. An illustration of the hemispheres that are stored as a
square map is seen in figure 10.2.

The radianceL(x, ω) is computed by casting a ray from pointx in directionω and evaluate the first
surface, that is hit. If the surface is diffuse, the radianceis gathered from the surface, if not, the ray is
reflected until a diffuse surface is found. A radiance samplecan be seen in figure 10.3 on the following
pagea.

The number of samples on the hemisphere, that are needed to create a good approximation to the IDF
at a point depends on the surroundings. A scene containing many objects may require a high sampling
rate to avoid that certain important features of the scene isnot missed.

When all radiance values has been gathered at a point, they will be used to calculate the irradiance
for each sampling direction on the sphere. The Irradiance and the radiance is calculated for the same
resolution and the same directions. Irradiance is a smoother function than radiance, which means that
a high sampling rate is not always needed, depending on the surroundings. In figure 10.3b the radiance

79

CHAPTER 10. IRRADIANCE VOLUME

Figure 10.2: (a) shows the hemispherical mapping of a squaremap. (b) shows a sphere created from two of such
hemispheres. (Image by [Shirley and Chiu, 1994])

(a) The radiance of the Cornell Box sampled from
the center of the box

(b) The radiance sample converted to an irradiance
sample

Figure 10.3: A sample in the middle of a geometric model as radiance and irradiance respectively. (Image by
[Greger et al., 1995])

80

10.2. CREATION OF AN IRRADIANCE VOLUME

sample from figure 10.3a is seen converted to an irradiance sample.

For a given direction the irradiance is computed for a hypothetical surface whose normal vector points in
that direction. With a set of directional samples{ω1, . . . , ωn} sampled at a given pointx the irradiance
in directionω is calculated using equation 10.2:

H(ω) ≈
N
∑

i=1

L(ωi)max(0, ωi · ω)∆ωi (10.2)

whereL is the radiance in directionωi from pointx, ∆ωi is the solid angle of the cone eachωi repre-
sents, that is, each direction per sample represents a surface area on the sphere of directions, this area
becomes a cone when projected from the center.N is the number of directional samples, on the sphere.

The sphere of directions is subdivided into regions of equalsize, it follows that∆ωi ≈
4π
N

and equation
10.3 emerges:

H(ω) ≈
4π

N

N
∑

i=1

L(ωi)max(0, ωi · ω) (10.3)

Equation 10.3 is calculated for a number of directions at thesample point in order to obtain a set of
directional irradiance samples. The irradiance is computed in each direction by summing the cosine-
weighted contribution from each radiance sample on the hemisphere oriented in directionω. The ap-
proximate irradiance form an approximation of the IDF at a given point in space.

The resulting IDF can like a radiance sphere be displayed as an irradiance sphere.

In an implementation the Irradiance Volume is represented as three distinct data structures: samples,
cells and grids.

• Samples:Contains directional irradiance values for a particular point.

• Cells: Representing a box in space, bounded by eight samples, one ateach corner. Can contain a
grid to form a bilevel structure.

• Grids: 3D array of cells.

When the irradiance volume is queried for the IDF at a given point between the samples, the following
steps are taken:

Pseudo code 10.3Querying the Irradiance Volume
1. Calculate which cell in the first-level grid the point belongs to.
2. If cell contains a grid, calculate which cell in the second-level grid in which the point is contained.
3. Find which data value in the cell’s samples corresponds toω.
4. Given the points position within the cell and the eight corner sample values, interpolate to get the
irradiance.

A completed irradiance volume can be seen in figure 10.4 on thenext page.

The process of finding which cell that contains which point issimple, as the bounding box of the
volume is known. To find the value corresponding a directionω, the hemispherical mapping described
by [Shirley and Chiu, 1994] must be inverted. This will convert the direction to a(u, v) coordinate in

81

CHAPTER 10. IRRADIANCE VOLUME

Figure 10.4: A completed Irradiance Volume. (Image by [Greger et al., 1995])

the rectangular array describing the sample. This is used inthe query where a simple check is performed
onω to determine which of the two hemispheres of a sample it belongs to. Then the inverse mapping of
the hemisphere is used to find out which pixel in the irradiance map the direction lies within. This value
is obtained from all eight surrounding samples, and trilinear interpolation is used to find the irradiance
in directionω at a given point.

Depending on which objects that needs to be rendered in the scene, a specular reflection may be per-
tinent. The Irradiance Volume normally handles only diffuse objects, but can be extended to simulate
non-diffuse effects by storing higher order moments than the irradiance. With this extension simula-
tion of such phenomena as Phong-like glossy reflections is possible, given the specularity is not too
high. The reason for this is that the main assumption in the irradiance volume is that it is possible to
interpolate between samples to get a good approximation of the irradiance, but as the specular function
increases, this assumption moves towards being invalid.

In order to build a volume of higher order, equation 10.3 is rewritten to:

Hn(ω) ≈

(

n+ 1

2

)

4π

N

N
∑

i=1

L(ωi)max(0, ωi · ω)n (10.4)

The specular part is obtained by putting the reflected light to an order, in this casen is the order of
the moment.ω is a cosine-weighted average of radiance samples on theω-oriented hemisphere. Asn
increases, it has the effect of weighting the integration ofthe radiance towardsω, which means, with a
high enough order, the specular reflectance map will equal the original radiance map.

82

10.3. USE OF IRRADIANCE VOLUME IN THE SYSTEM

10.3 Use of Irradiance Volume in the system

In the system developed for this project the implementationof the Irradiance volume function is gener-
ally as described in this chapter. With the exception that the radiance is given by an environment map
instead of the traditional use of Irradiance volume, where it functions in conjunction with a method,
like radiosity, that has already computed the radiance in the various parts of the scenes.

The irradiance volume created for the system takes as input asimple 3D model of the lobby scene. The
lobby scene has been recorded as an environment map for the system and a 3D model has been created,
that has a minimal set of faces that still describes the main walls of the lobby, and is at the same time a
"closed" model. Closed meaning that if positioned inside the modeled scene, no matter which direction
a ray is shot, it will always hit geometry. This is important,because if the ray does not hit anything in a
given direction, the function will assume that the radiancecoming from that direction is black, which is
never the case in a given real scene like the lobby scene. The 3D model of the lobby scene can be seen
in figure 10.5. The model has omitted the bridge, stairs and pillars of the real lobby scene, in order to
speed up the creation of the irradiance volume, but the algorithm is able to handle a scene with arbitrary
geometry, so if more detailed and correct representation ofthe real scene is desired for the irradiance
volume, it is possible to do, simply by adding more geometry in the scene, that symbolises e.g. the
bridge.

Figure 10.5: The reduced 3D model of the lobby scene.

The Irradiance volumes secondary input, the bounding volume, in this case an axis aligned bounding
box (AABB), that controls the areas in which the objects are allowed to move within the scene. This
is also the bounds in which the irradiance volume will be set up. The grid of the irradiance volume
will start in each corner of the AABB, and subdivide each cellin the volume according to how many
sub-levels the user has decided the irradiance volume should contain for the given scene.

The structure of the volume is constructed, as suggested by [Greger et al., 1995], by three entities, grids,
cells, and samples. To construct the volume, these entitiesfollows a couple of rules:

1. A grid always contains 8 cells.

2. A cell contains either a new grid or 8 samples.

From these rules a irradiance volume grid is created from thebounding boxes given by the user. The

83

CHAPTER 10. IRRADIANCE VOLUME

volume is first created by making a grid in the area confined by the bounding box. This first level of the
grid will contain 8 cells.

Each cell is evaluated, and if it contains geometry, the cellis set to contain a grid, which again contains
8 new cells. This new grid is the next level of the volume. Thisprocess is repeated for as many iterations
needed until it reaches a stop criteria. When the stop criteria has been met, all cells not containing grids,
is set to contain 8 samples.

When the system creates the radiance samples in the environment, it shoots rays out into the model of
the room, and the first surface that is hit, is being used to calculate which longitude-latitude coordinate
it is corresponding to on the environment map of the room. Thereturned value from the environment
map is used as the returned radiance for that direction. The irradiance volume in this system handles one
environment map, and as such there will be areas of the scene,that is not described by the environment
map because of occlusions. Multiple environment maps are currently not handled in the system. When
the system shoots rays for each sample, it finds the 3D position of the intersection. If the 3D position
from where the environment map for the scene was recorded is subtracted from the intersections 3D
position, the result is a vector, that can be converted to a pixel coordinate on the environment map.
This process is described in chapter 8: Modeling Real Scene Illumination, and done for each found
intersection point. The process does not test if there is geometry between the intersection point and
the environment map recording point, in which case the radiance found in the intersection point is not
correct. In appendix C on page 133 the various intersection tests used in the system is described.

Multiple environment maps are not handled in the system, because arguably, it has little impact on the
final result. For each sample taken in the environment, each direction is integrated over a hemisphere
of directions, which mean that flaws in one directional radiance sample has little effect on the final
irradiance sample, given most of the sampled directional radiances are correct. A visualisation of how
the environment map is represented on the geometry, and thereby what is sampled by the irradiance
volume is seen in figure 10.6a, the errors seen in the image where lines on the map does not match up
with the lines in the geometry, is because the tracker eitherwas not placed exactly horizontal during
recording of the map, or that is has been put off by magnetic fields or nearby metal in the recording
process.

(a) An environment map, mapped to
the geometry of the lobby scene

(b) The corresponding environment map

Figure 10.6: An environment map, mapped to geometry,

When the radiance has been gathered for each sampling point in the scene, each radiance sample is
converted into an irradiance sample. This is a very computational intensive process, if there are many
samples in the system. Given that each sample has the same number of directional radiance samples,

84

10.3. USE OF IRRADIANCE VOLUME IN THE SYSTEM

and each directional radiance sample is oriented equally from sample to sample, a lookup-table can
be created, that handles theωi · ω calculation once. If all radiance samples has the same mapping
dimensions, this part of equation 10.3 is always the same foreach sample, and so it can be pre-calculated
once, and used by the system in the creation of the irradiancesamples. The creation of irradiance
samples now only needs to multiply each pre-calculated direction with their corresponding radiance
sample, and the irradiance volume is created. In figure 10.7 athe samples are shown for the constructed
irradiance volume, and the pink box is set into the scene as geometry, and the irradiance volume creates
more samples around the geometry, as it should.

Figure 10.7: The samples for the lobby scene, based on the geometry projected environment map.

The irradiance volume is now ready for use. When an object within the confinements of the irradiance
volume is to be shaded, a query is sent to the volume, that searches the structure to find the sample for
the objects particular 3D position. The search in the structure is as described by [Greger et al., 1995]
to start at the top-level, determine which cell contains thequeried 3D position. If this cell contains a
grid, the search descends one level and searches the new grid. Once a cell containing the 3D position
has been found, the 8 samples of the cell is interpolated in regards to the queried 3D position.

Figure 10.8 on the next page shows a cell, where the 3D pointp is to be interpolated from the 8
surrounding samples. To interpolate in 3 dimensions the length of the span of the cell in each direction
must be calculated:

wx = |~p4 − ~p0| (10.5)

wy = |~p2 − ~p0| (10.6)

wz = |~p1 − ~p0| (10.7)

85

CHAPTER 10. IRRADIANCE VOLUME

Figure 10.8: A cell, with 8 corner samples, and a pointp, that is to be interpolated from the corner samples.

The interpolation is done locally, withp0 marking the origin of the local coordinate system, and the
position p must be re-based to a positionpn within the local coordinate system, to match this new
origin:

~pn = ~p− ~p0 (10.8)

With these direction length, the weight per sample can be calculated:

w0 = (
wx − ~pn.x

wx
) · (

wy − ~pn.y

wy
) · (

wz − ~pn.z

wz
) (10.9)

w1 = (
wx − ~pn.x

wx
) · (

wy − ~pn.y

wy
) · (

~pn.z

wz
) (10.10)

w2 = (
wx − ~pn.x

wx
) · (

~pn.y

wy
) · (

wz − ~pn.z

wz
) (10.11)

w3 = (
wx − ~pn.x

wx
) · (

~pn.y

wy
) · (

~pn.z

wz
) (10.12)

w4 = (
~pn.x

wx
) · (

wy − ~pn.y

wy
) · (

wz − ~pn.z

wz
) (10.13)

w5 = (
~pn.x

wx
) · (

wy − ~pn.y

wy
) · (

~pn.z

wz
) (10.14)

w6 = (
~pn.x

wx
) · (

~pn.y

wy
) · (

wz − ~pn.z

wz
) (10.15)

w7 = (
~pn.x

wx
) · (

~pn.y

wy
) · (

~pn.z

wz
) (10.16)

The samplep can then be created with the following equation:

pcolor = ~p0 · w0 + ~p1 · w1 + · · · + ~p7 · w7 (10.17)

When the interpolation operation has been performed, equation 10.17 can be utilised to find the color
in a requested direction, by taking the colors from the same directions from the 8 samples, and weight

86

10.3. USE OF IRRADIANCE VOLUME IN THE SYSTEM

them as seen above. In figure 10.9a a sample interpolated from8 corner samples is seen in the lobby
scene.

(a) (b)

Figure 10.9: (a):A sample interpolated from 8 corner samples. and (b):An arbitrary object shaded with our
irradiance volume.

When the irradiance volume has been created, it can be used toshade arbitrary objects if it is given a
position and normal direction for each vertex in the 3D object. This is done by finding the 8 samples,
the vertex position is between, and find the weights of the 8 corner samples, to make the interpolation
between them. Then the 4 directional samples, that are closest to the requested directional sample, the
vertex normal, are found. The sample color is then found by interpolating between the 4 directional
samples and the 8 positional samples. An example of this is seen in figure 10.9b. The shading of the
vertices of an object using the irradiance sample is currently utilizing the diffuse Lambertian BRDF,
where each sample in the hemisphere of directions is scaled by an albedo-value. Since the albedo-value
is a constant, the same result can be obtained by scaling irradiance sample with an albedo after the
irradiance has been calculated.

The implementation of the irradiance volume has shown, thatit is important, to have more than one
level before starting to subdivide the cells containing geometry. If the difference between the sizes of
two adjacent cells is great the lighting of a sample has a tendency to "pop" when moving from one cell
to another. The problem is particularly clear in cells of different size, that are close to a surface. But the
problem is possible to fix with more initial levels of samples.

A problem that is clear from the samples in figure 10.7 on page 85 and 10.9, is that the range of the
environment map is low. The intensity difference between the bright light sources of the scene is not
realistic. The parts of the map where the most light is emitting from is saturated in the environment
map. This means that the brightness of those pixels can be many times greater than the data indicates.
This means that the light from a surface reflecting light can weigh as much as the light affecting it,
if they both are saturated in the environment map. If the environment maps where captured as HDR
images this problem would be corrected.

Another issue of the irradiance volume is that if there is a small but very dominant light source in the
environment, it is possible that not all irradiance samples"catches" the light source when sampling in
the different directions. One way to minimize this possibleerror, is to have more directional samples
per irradiance sample. This however increases the processing time greatly. But the processing time is

87

CHAPTER 10. IRRADIANCE VOLUME

mainly used on converting the radiance samples to irradiance samples. With this in mind, the super-
sampling method could be applied, where a high amount of directional radiance samples are created for
each positional sample, and afterwards averaged to a smaller hemisphere map. This way more points
in the environment are hit, and the possibility to find the light sources are increased.

Another possible solution to the problem would be to manually create a point in the scene, that marks
the light source, that all samples must take into account during calculations. Practically it could be im-
plemented by finding the absolute direction to these possible light sources and find the four directional
samples closest to the direction to the light source, and addthe light of the source to these four samples.

88

CHAPTER 11
Radiosity

Radiosity is a technique that calculates the lighting in a complex diffuse-lighting environment, based on
the scene’s geometry. Because the radiosity calculations do not include the eye point of the viewer, the
geometry and lighting in the environment do not need to be recalculated if the eye point changes. This
enables the production of many scenes that are part of the same environment, and a "walk through" the
environment in real time.
The amount of light in the scene is constant - light which is emitted is always absorbed somewhere.
Every object is subdivided into many, many patches (or polygons). Each patch has a specification
telling the system how this patch will affect other patches,that is, how it reflects light.

Source: [Elias, 2003b], [Akenine-Möller and Haines, 2002], [Nettle, 1999a], and [Nettle, 1999b].

11.1 Radiosity matrix

A light source emits energy into the scene, and the energy distribution to the various surfaces are
calculated. Each surface has two associated values. A valueof how much it is illuminated, and a value
of its surplus of energy, i.e. how much energy it can radiate.In the beginning only the light source will
have radiative energy, while all others have none.

Next step is to calculate the interaction of energy from eachsurface to every other surface. If the amount
of surfaces is n, then the calculation of the interaction between the surfaces, this is ann2 problem.
The interaction may be calculated based on the surfaces geometrical relationships. This relationship
between two surfaces is a single value and is called the "formfactor".

All the calculated form factors in a scene may be stored in ann×nmatrix, called the "radiosity matrix".
Each element in the matrix contains a form factor for the interaction from the surface indexed by the
column and the surface indexed by the row.

The radiosity matrix is set up as equation 11.1:














e1

e2
...

en















=















1 − r1f11 −r1f12 . . . −r1f1n

r2f21 1 − r2f22 . . . −r2f2n

...
...

.. .
...

rnfn1 rnfn2 . . . 1 − rnfnn





























b1

b2
...

bn















(11.1)

Whereei is each sources radiant exitance (i.e. a non-zero value for light sources), andri is the re-
flectance of patchi, fij is the form factor between two patchesi andj. bi is the radiosities that are to
be calculated. To find the radiosity the matrix is solved.

To solve the matrix, each column, or source, is set to emit energy to each row, or destination, in that
column. When this is done, the energy from the source has beendistributed to all surfaces (destinations).
But these surfaces serves as receivers and reflectors at the same time, which means they are going to

89

CHAPTER 11. RADIOSITY

reflect some of the absorbed energy back into the scene. So when energy is being sent to other surfaces,
the energy is divided into the two values each surface is assigned, the illumination value and the radiative
value. The light energy will be sent back into the scene, as the matrix is processed. When the matrix is
solved, all light has bounced around and the lighting of the scene has reached an equilibrium.

The classic version of radiosity has the following pipeline:

1. Generate Model

2. Compute Form Factors

3. Solve Radiosity Matrix

4. Render

In radiosity the basic principle is to remove the distinction between objects and light sources. Now,
everything can be considered a potential light source.

The basic premises of radiosity are:

1. There is no difference between light sources and objects.

2. A surface in the scene is lit by all parts of the scene that are visible to it.

Anything that is visible is either emitting or reflecting light, i.e. it is a source of light. Everything the
surfaces sees around them is a light source. And so, when considering how much light is reaching any
part of a scene, care must be taken to add up light from all possible light sources.

11.2 Progressive refinement

[Cohen et al., 1988] published a paper in 1988 called "A Progressive Refinement Approach to Fast
Radiosity Image Generation", that introduced a new way to solve radiosity by reordering the way things
were done.

The traditional method had illumination being gathered by each destination from its source, hence the
method was called "gathering". In progressive refinement this process is reversed and defined this as
"shooting".

The basic idea is to start with finding surface with the most energy to contribute to the scene, the
surface with the highest amount of radiative energy. This surface will then iterate through the rest of
the surfaces in the scene, and distribute its energy as it progresses. The process starts finding the next
surface with the most energy, and cycles through the other surfaces. this is repeated until the largest
amount of radiative energy in the scene has met a predetermined criteria, that means that its contribution
to the scene would be insignificant. When this process is finished an image would be rendered for the
user.

11.3 Patch subdivision

The surfaces has only one illumination value assigned, which means there can be no change in illumina-
tion across surfaces. In radiosity all surfaces in a given scene may be subdivided into smaller polygons,

90

11.3. PATCH SUBDIVISION

called patches, to accommodate this problem. Then all patches are treated as their own surface instead
of the original surface. The drawback is that the radiosity matrix will grow to the number of patches in
the scene squared.

This means that a very simple scene of 1000 polygons will havea matrix with 1 million elements. If
each polygon is subdivided into8× 8 patches the matrix would contain 4 billion elements in the matrix
((8 ·8 ·1000)2 = 4, 096, 000, 000). This illustrates that even simple scenes may produce big problems.

Patches are used to simulate area light sources. Instead of treating a surface as an area light source, it
is split up into smaller light sources across the original surface. With a adequate subdivision the result
may be quite satisfactory.

The subdivision should be done intelligently. Instead of subdividing every surface into a set of patches
one square unit each, the subdivision should be weighed in regards to the contrast in the different areas.
Meaning high-contrast areas should have many patches, while similar neighboring areas should have
less.

There are various techniques to make an intelligent subdivision. Progressive subdivision is the most
commonly used method. Once a surface has emitted its energy,each patch in the dataset is evaluated
to decide if two adjoining patches difference in illumination values is above a set subdivision criteria.
If there is a big difference, there will be a high contrast between the two, and they should both be
subdivided.

The next step is to subdivide the patches themselves, into elements. This is done for both performance-
and aesthetic reasons. The subdivision into elements may preset to a specific resolution. Unlike surface
subdivision, where the original surface is discarded and replaced by the patches, the patches are main-
tained when they are subdivided. The reason for this is that the patches may be used for shooting, and
the elements may be used for gathering.

A patch is typically subdivided into8 × 8 elements. The patch with the largest amount of radiative
energy is, during the distribution process, chosen for shooting. From that patch, the energy is distributed
to all of the elements in the scene. The elements stores and displays the illumination value they are
given, and the radiative energy, that would be reflected fromthe different elements is transferred to their
parent patch. The patch will then handle the shooting instead of the elements. This allows for a high
surface geometry resolution with a low resolution for distribution. This may save a lot of processing
time.

To exemplify the rendering of a scene, the process is shown from the point of view of a patch:

In the scene, all surfaces are subdivided into multiple patches. In figure 11.1a a surface is shown, and a
patch on the surface is chosen in figure 11.1b.

If a virtual camera is placed on the patch looking outwards, it is possible to see what it sees, see figure
11.2a. The room is very dark, because no light has entered yet. The edges are drawn afterwards to be
able to see the scene. If all the light it sees is added together, the total amount of light from the scene
reaching the patch is calculated. This is the total incidentlight on the patch. This patch can only see the
room and the darkness, by adding up the incident light, it is apparent that no light is arriving here. This
patch is dark.

In figure 11.2b a patch placed lower on the surface is rendered, this patch can see the bright sun outside
the window. If the incident is added up here, it will show thata lot of light is arriving at this patch
(although the sun appears small, it is very bright). This patch is brightly lit.

This process is repeated for all the patches, and the scene will look like figure 11.3.

The patches near at top of the pillar, which is occluded from the sun, are in shadow, and those in eyesight

91

CHAPTER 11. RADIOSITY

(a) A surface of a given scene is subdivided into
patches

(b) A patch is chosen, and the scene is visualised
from its perspective.

Figure 11.1: The surface chosen for the visualisation. [Elias, 2003b]

(a) The camera is places in the center of the patch,
and its view of the world is seen

(b) The view from a lower patch

Figure 11.2: The view from two different patches, where (b) can see the light source. [Elias, 2003b]

92

11.4. ACCELERATING RADIOSITY

(a) The lighting of the patches after 1st pass (b) The lighting of the entire scene

Figure 11.3: The lighting of the scene after 1st pass. [Elias, 2003b]

with the sun are brightly lit. Those that partly see the sun, occluded by the edge of the window, are only
dimly lit.

The Radiosity algorithm proceeds like this for more passes,where shadows naturally appear in parts of
the scene that cannot see a source of light.

Now that some parts of the room are brightly lit, they themselves have become light sources, and can
cast light onto other parts of the scene.

In figure 11.4a the patch that could not see the sun, and so received no light in the 1st pass, can now see
the light shining on other surfaces. So in the following pass, this patch will become slightly brighter
than the completely black it currently is. All patches are processed once again, and all patches that
could see no light before, can now see the other lit up patchesand use them as light sources. In figure
11.4b the 2nd pass has been performed, and the lighting of theroom is greatly improved.

11.4 Accelerating Radiosity

To create the views from each patch, a hemisphere is placed over the patch, and from that patch’s point
of view, the scene is rendered on the inside of the hemisphere, and the texture will look just like the
scene from the patch’s point of view. The hemisphere was introduced by [Cohen and Greenberg, 1985].
There is no difference between a hemisphere and a hemicube from the view of a patch. A hemisphere
for the patch in the previous example can be seen in figure 11.5a.

If the fish-eye view could be rendered easily, then the calculations would be to sum up the brightness of
every pixel to calculate the total incident light on the patch. It is however not trivial to render a fish-eye
view, and so some other ways has been found to calculate the incident light.

To obtain shadows visibility information is needed, to knowhow much of the various patches in the
scene are visible from other patches. A common way to achievethis information is to use a z-buffer.

93

CHAPTER 11. RADIOSITY

(a) The view from the patch after 1st pass (b) The scene lit after 2nd pass

Figure 11.4: The incident light on the patches after 1st passlets otherwise occluded patches see light, and the
rest of the scene is already lit in the 2nd pass. [Elias, 2003b]

The z-buffer must be generated from the patch’s point of view. One way to do this, is by using a
hemicube. A hemicube equivalent to the hemisphere is shown in figure 11.5b.

A hemicube is half a cube, split orthogonally along one axis.A pin-hole camera is placed at the base
of the hemicube pointing at the top face, with a90 deg frustum. The top face may be considered as
the rendering surface of the camera. When the scene is rendered from this perspective, the camera sees
what the patch sees.

Patches rendered onto the surface of the hemicube will occupy "hemicube pixels". Patches far away
and with great angles of relative orientation will occupy fewest pixels. Using the z-buffer it is possible
to create shadows by detecting which patches are partially or fully occluded.

These renders needs to be translated into energy transmissions. Normally the frame buffer stores color
values and a z-buffer the depth values. Here the z-buffer keeps the depth information, while the frame
buffer stores patch ID’s instead. A complete render gives a partial form factor information of how much
energy gets transmitted between patches. The render is partial because information of the relative angle
between patches is missing.

Relative angles are used to decrease the amount of energy transferred from one patch to an other. A
greater angle means less energy is transmitted. The render may tell how wide an angle the destination
patch is relative to the camera. But the shooters angle also needs to be taken into account. Like Lambert
shading, the surface receives less light, the more it turns away from the light. But the light source (the
shooting patch) is an area light, which means it may also havean angle, and this angle needs to be taken
into consideration before energy is transmitted.

To do this, a delta form factor may be utilised. The delta formfactor is a simple table of values, with the
same resolution as the surface of the hemicube, and it contains values that are used to scale the amount
of energy that each pixel in the hemicube may transmit. Values in this table are highest in the center,
and decreases towards the edge, as patches directly in frontof the shooter will receive most energy, and

94

11.5. FORM FACTOR CALCULATION

(a) The hemisphere for the
patch.

(b) The equivalent hemicube

Figure 11.5: The hemisphere and hemicube, that can be created for a patch. [Elias, 2003b]

those with the most incident angle receive the least.

The shooting is performed through each pixel in the frame buffer, where the patch’s ID’s were stored.
When each pixel, or patch, in the surface is processed, the shooters total radiative energy is scaled by
the delta form factor associated with that pixel. And like that, the total energy of the shooter has been
transmitted to the other patches in the scene.

11.5 Form factor calculation

The form factor is the calculation of how much energy is transmitted from one patch to another. When
performing the form factor calculation, a criterion may be set, to ease the calculations: The area of two
interacting patches must be relative small,when compared to the distance between them. This will result
in the lines between two patches will be relative uniform to each other, as all points on the receiving
patch will have nearly the same relative angle to all points on the transmitting patch. With this criterion
met, each patch may be treated as one area, and the interaction between two patches is calculated
once. If the relative angle between patches is kept low the errors, as a result of the simplification, are
minimized.

To transmit from one area to another, differential areas areapplicable. Differential areas are calculated
by dividing the transmitting patch’s area by the receiving patch’s area. The result is a value that scales
the amount of transmitted energy that will be received.

The standard form factor equation, according to [Cohen and Greenberg, 1985] and [Wallace et al., 1987],
may be seen in eq. 11.2:

fi−j =
1

Ai

∫

Ai

∫

Aj

cosθi · cosθj

π · d2
· hi·jdAjdAi (11.2)

i denotes the transmitting surface, andj denotes the receiving. But by utilizing the above mentioned
criteria, the two integrals may be avoided, which simplifiesequation 11.2 to equation 11.3:

95

CHAPTER 11. RADIOSITY

fi−j =
cosθi · cosθj

π · d2
· hi·jdAj (11.3)

In equation 11.3 thed is the distance from patch to patch.hi·j is the relative visibility between two
patches. AnddAj is the differential area.

11.6 Use of Radiosity in the system

In the AR system the utilization of radiosity is limited to shadow-casting. Normally radiosity is used to
distribute energy into a scene, and thereby lighting it. In ascene where virtual objects must be integrated
into an existing real image, some light calculations may be unnecessary, as the scene is already lit. In
this case, the lighting of the scene must be estimated, and the virtual objects lit and casting shadows
from the estimated light sources.

A radiosity solution, depending on which type, makes several passes to compute the light-distribution,
with an environment-map of a given scene, these computations may be skipped, and the light informa-
tion from the environment map may be utilised to determine from where the light affecting the objects,
and thereby casting shadows, are positioned. So the system needs only a 1st pass radiosity calculation.
This saves a lot of processing time for the system.

The radiosity algorithm designed for this project has an online and an offline process, the pseudocode
for the offline process is:

Pseudo code 11.1The offline part of the Radiosity utilization in the system.
1. Subdivide all Emitting objects.
2. Subdivide all Receiving objects.
3. Map Thresholded environment map to emission patches.
4. Emit energy to all receiving patches.
5. Find most significant energy additions to all receiving patches.
6. Omit least significant energy additions for all receivingpatches.
7. Normalize remaining energy for all receiving patches.
8. Subdivide movement space.
9. Create lines between receiving and emitting patches.

The radiosity algorithm designed for the lobby scene project takes as input the same scene model as
the irradiance volume, and seen in figure 11.6. This model is used for intersection testing during the
radiosity generation, and can also be used as the model for generating receiving and emitting patches.

There are 3 classes of geometry that is utilised in the radiosity calculations:

1. Full scene model used for intersection test

2. Shadow receiving geometry

3. Light emitting geometry

The user has the possibility to input a specific version of thescene model, where only the surfaces
that are likely to receive shadows from the objects are contained. This step is done to prevent the

96

11.6. USE OF RADIOSITY IN THE SYSTEM

Figure 11.6: The low-polygon version of the lobby scene

algorithm to create a shadow on top of a window, and at the sametime the speed of the system is
greatly improved if no unnecessary patches are present within the scene, that will demand processing
time during the online process. The user can, if decided set amodel of which surfaces are to be used
as possible emitting patches. The algorithm can as standardtake the full scene model and use the
contained surfaces as emitting surfaces, depending on the intensity their area has on the environment
map. Figure 11.7 shows an example of surfaces marked as shadow area and light area respectively.

(a)The area marked by a user to be shadow receiv-
ing area

(b) The area marked by a user to be light emitting
area

Figure 11.7: The user can mark areas that the algorithm is confined to find its emitting and receiving patches in.

The models for receiving geometry and emitting geometry is subdivided into several patches. The
resolution of the patches can be set by the user, by stating the smallest size a patch may have, the
subdivision creates the patches so their size is close to this set value. The receiving and emitting patches
can be set to have different sizes, as it may be important thatthe receiving patches have a certain size,
to look realistic. If the receiving patches are too big, the shadow may look blurry in regions that are
supposed to have a sharp edge on the shadow. At the same time itmay be desirable to have the emitting
patches being bigger in regards to the performance of the system.

The size of both the emitting and receiving patches depends highly upon the size of the objects that are
moving in the scene. The smaller the objects, the smaller thepatches needs to be.

Many radiosity patch subdivision algorithms can adaptively subdivide the surfaces, so the areas with

97

CHAPTER 11. RADIOSITY

the most contrast has the most patches. This approach is not applicable in the system for the lobby, as
the virtual objects are moving dynamically in the scene. Therefore the subdivision must be uniform
throughout the scene, to assure the same level of shadow detail wherever the shadow falls.

A patch in standard radiosity has emission, reflectance, incoming energy, and outgoing energy as vari-
ables. In the radiosity based on an environment map, only incoming energy and outgoing energy are
preserved, as the emission and reflectance of a patch is not interesting in regards to finding the energy
transmitted from the emitting to the receiving patches.

To use the environment map with radiosity shadows, each emitting patch is evaluated, for which area on
the environment map it represents. For each emitting patch,the algorithm makes a sampling across its
surface, and the average intensity of these samples is savedas the patches emitting or outgoing energy.

The next step is to calculate the energy transfers between the emitting and the receiving patches. To do
this, equation 11.3 on page 95 is utilised, and calculated between all receiving and emitting patches.

Equation 11.3 looks like:

fi−j =
cosθi · cosθj

π · d2
· hi·jdAj

From the environment mapped to scene geometry, light will betransmitted to the receiving patches
in the scene, the luminous intensity from the emitting patches off course given by the intensity in the
environment map. During the radiosity calculation it will be noted for each receiving patch how much
light it receives from each of the emitting patches. When allreceiving patches has received light from
all emitting patches, each receiving patch will be checked for which light sources adds to it’s lighting, in
this process each patch will have it’s energy addition normalized, so the total received energy amounts
to 1. If there are patches that only adds below a certain percentage of the total energy to each patch, that
is, adding below what will be possible to see in the renderingof the patches, it will be omitted from the
receiving patch’s domain, this is mainly done to speed up theonline process. In the process each line
is intersection tested with the full scene model, to make sure the light does not pass through a wall and
still lights a patch.

For the virtual objects to be able to cast shadow in the scene,lines will be set up from each receiving
patch to each of the emitting patches, that adds to the patch.This is the reason why each receiving patch
is checked for additions from each emitting patch, to omit the unnecessary links between patches. The
line is drawn from the center of each patch.

The Radiosity setup is now ready to cast shadows in the scene.The pseudocode for the online rendering
of the radiosity is:

Pseudo code 11.2The online part of the Radiosity utilization in the system.
1. For each dynamic scene object, test if a line is intersected, and write which patch are affected in
buffer.
2. Render patches in buffer as shadow.

If an object intersects any of the lines that has been set up, the intersection means that the receiving
patch can no longer "see" the emitting patch that it shares the line with, and therefore the energy that
was received from the occluded emitting patch is subtractedfrom the receiving patch. This will dampen
the area the patch represents in the scene, and thus the object will cast shadows in the scene. In figure
11.8 an example is seen where all patches that are affected bythe intersection of the lines associated
with them is marked, as well as the lines that intersects the object.

To give each patch the look of a shadow, the alpha channel is affected at their vertices. The patches has

98

11.6. USE OF RADIOSITY IN THE SYSTEM

(a) The receiving patches that are affected by the
position of the sphere is marked on the floor of the
scene with black faces

(b) The lines the sphere is intersecting is marked

Figure 11.8: The patches affected by the sphere position andthe lines that marks the occlusion of the various
patches.

3 vertices, and has for this reason each vertex belongs to 6 patches. The shadow affecting each of these
6 faces affects their shared vertex. When a line leading to a receiving patch is intersected, the energy
from the emitting patch the line was spanned from is subtracted from the total value (1) of the face. The
energy from each emitting patch was normalised, therefore asubtraction of the various adding energy
emitting patches will always result in a value between 1 and 0.

When the values for all receiving patches, that loses energybecause of the occlusion of the object has
been found, each affected receiving patch adds their1

6
of their energy to each of their 3 vertices, when

all neighboring faces has added their energy, the vertex hasthe value of how much energy is added at
that point in space. This process is not carried out on vertices that lies on the edge of the patch-network,
and therefore does not have 6 neighboring faces. When this process is done the patches are rendered
with the energy added to each vertex as the alpha value. In figure 11.9 an example is seen how some
large patches are rendered with this technique.

Through the implementation of the radiosity, it has been experienced, that though it is important to have
a high resolution for the receiving patches, it is importantas well, that the resolution for the emitting
patches is not too low, as the objects may have a tendency to avoid the lines if they are too far apart.
Again the resolution of the patches depends largely upon thesize of the occluding object.

The current implementation of the radiosity tests for intersection with all lines every time it draws
shadows. The algorithm could be greatly optimised if the it could detect in advance which lines that are
likely to intersect the object. [Gibson et al.,] developed an algorithm that use a shaft hierarchy, with
a coarse representation, that determines where the object is placed, and afterwards only tests the lines
that possibly intersects the object.

When an object intersects a line, the current assumption of the algorithm is that the entire emitting face
is invisible to the receiving face. If the representation should be correct, it should be tested if from some
of the points on the receiving patch the emitting patch is visible, which would give a better precision in
the shadow casting.

The current implementation of the radiosity shadowing algorithm only casts shadows based on the

99

CHAPTER 11. RADIOSITY

(a) Shadows cast in the lobby scene, by coloring each
vertex of the patches.

(b) Shadows cast on an invisible floor, ready to be su-
perimposed on a video feed.

Figure 11.9: A sphere casting shadow onto patches, that are colored according to how much energy is subtracted
from them.

objects bounding sphere. To yield the full benefit of the radiosity algorithm implemented, the ray
intersection testing should include a low-polygon versionof the objects that are to cast a shadow, when
the bounding volume test has passed. This will create more realistic shadows of the object.

100

CHAPTER 12
The Final system

This chapter describes how the various methods described inthe previous chapters are merged into one
system capable of running a real-time augmented reality system

The system developed during the project is very similar the intended system described in chapter 3 on
page 25. There are minor parts that was intended to be in the system, that were not finished at project
deadline.

The system is divided into offline and online processes.

12.1 Offline process

In the offline process, an environment map is created, by recording the surrounding with a camera
placed in the scene. The recorded environment map is then used by both the irradiance volume creation
and radiosity calculations.

The irradiance volume generates samples throughout the scene, that indicates how the irradiance con-
ditions are in the various sample positions. The samples arebased on a 3D model of the scene, that has
the environment map assigned.

The radiosity part of the system is calculating how light is distributed in the scene, based on the envi-
ronment map. The surfaces that are taken into account by the radiosity calculations are reduced to be
the surfaces most likely to receive and generate shadows. Rays are spanned between these surfaces, and
are used to generate the shadows in the online part of the system. The offline rendering pipeline has
been evaluated to fit the final system, and can be seen in figure 12.1.

12.2 Online process

In the online part, the camera is positioned in the scene. Thecamera data is captured by the system
together with tracking data, indicating the orientation ofthe physical camera. The tracking data is used
to transform the virtual objects in the scene, to correspondto the camera movement. There is a delay
between the time the tracking data is received until the corresponding video data is received. The result
is that during camera movement, the virtual objects are ahead of the rest of the scene. This problem is
solvable by the use of a buffer on the tracking data, where thetracking data is time-stamped. The delay
is measured, and the buffer is used to delay the tracking databy the delay time. This is currently not
supported by the system.

Furthermore the isotrak 2 tracker used in the system has low precision, and when the image is supposed
to be at a fixed position, the virtual objects, that are dependent on the tracking data, has a tendency to
jitter in its position, which quickly reveals to the viewer,that the object is virtual.

When the system is started, the virtual model of the scene maynot be aligned to the real scene. This
is handled through a calibration routine, where the user points at a point on the virtual model, and

101

CHAPTER 12. THE FINAL SYSTEM

Main Off-line Augmentation Pipeline

Build environment map

Undistorted Video feed

Tracker data

Computation pipeline

Irradiance Volume
Compute scene

irradiance

Data

Scene radiosity
parameters

Compute radiosity
parameters

Figure 12.1: The offline rendering pipeline for the final system.

afterwards its corresponding point in the real scene. From this information, the system is able to realign
the scene so the two points match.

The image data from the camera that is captured by the system is in the online process rendered as
background to the virtual graphics. Next step is to render the occlusion data to make sure that if a
virtual object is positioned behind a real object, that has been modeled in the virtual 3D model, the real
object is displayed in front of the virtual object.

When the virtual objects are rendered, the irradiance volume is used for shading. At each vertex the
irradiance volume is queried for the irradiance in the vertex normal direction. This value is used to
color the each vertex on the object according to the value stated by the irradiance volume. The color
value is scaled by the albedo for the object.

The rays that were set up in the offline process are used to castshadows for each object. The rays
are tested for intersection with each virtual object in the scene. The test is performed on the bounding
sphere of the object, and if an intersection is detected, a shadow is casted on the area that was supposed
to be lit by the ray. During the offline process the light addition that each ray represents to the patch is
calculated. When a ray is occluded from the receiving surface, the receiving surface is dampened by
the light addition the ray represented.

When the virtual objects are rendered with irradiance volume as shader, and radiosity as shadow gen-
erator, the image can be post-processed to further amplify the illusion that the image with the virtual
object is recorded by the camera.

Three post-processing methods has been examined, Anti-aliasing, Motion blur, and video noise. None
of these methods has been implemented by the deadline of the project.

Furthermore a method of updating the environment map used inthe system for light calculations has
been examined, but has due to the project deadline not been pursued.

The final system has the ability to record an environment map for a scene, and use it to create lighting
for virtual objects it places within the scene, on top of the video-data from the connected camera.The
online rendering pipeline has been evaluated to fit the final system, and can be seen in figure 12.2.

102

The class diagram for the final system is seen in appendix D on page 138.

Main On-line Augmentation Pipeline

Draw framebuffer to
screen

Draw Video Image to
framebuffer

Undistorted Video feed

Translate objectsTracker data

Set-up occluding objects3D scene model

Draw virtual objects
to framebuffer

Rendering pipeline

3D object model(s)
Object positions

Irradiance Volume query
Shade virtual objects

Compute shadows

Draw shadows to
framebuffer

3D scene model
3D object model(s)

Object positions
Radiosity query

Data

Figure 12.2: The online rendering pipeline for the final system.

CHAPTER 12. THE FINAL SYSTEM

104

Part III

Results and Discussion

105

CHAPTER 13
Test

This chapter contains the description of the various tests performed on the system, to evaluate the
performance of the final system.

13.1 Irradiance sampling

13.1.1 Purpose

The purpose of this test is to visually verify that the systemis able to sample irradiance in the defined
bounding area.

13.1.2 Set-up

The test is carried out in the online part of the system, displaying the environment map on top of the
video stream as virtual objects. All samples of the irradiance volume are displayed.

An environment map of the surroundings is created and is seenin figure 13.1

Figure 13.1: The environment map of the scene used in the test.

To verify how the environment map influences the irradiance samples within the volume, the irradiance
volume is tested with a modified version as seen in figure 13.2 on the following page

107

CHAPTER 13. TEST

Figure 13.2: The modified environment map

13.1.3 Results and Discussion

In figure 13.3 on the next page the samples created from the recorded environment map is seen. The
dark ceiling in the lobby is causing the samples to appear as if the dominant light source of the lobby is
the floor. To see how the volume would react if the lamps in the ceiling has a bigger surface, and thereby
has an increased chance to be sampled by each irradiance sample directional samples, the ceiling has
been modified to be all light, and the result is seen in figure 13.4 on the facing page.

Through visual inspection, between the samples and their corresponding environment map, the samples
are evaluated to match the environment maps. The samples furthermore matches the scene in which
they are placed. The samples derived from the original environment map, seems to match the scene
the best color-wise when the two sample images are compared.But taking the lights in the scene into
account, which are difficult to see in the images, the modifiedsamples matches the lighting of the scene
best, though they are slightly overexposed.

13.2 Irradiance shading

13.2.1 Purpose

The purpose of this test is to determine how well the shading of arbitrary objects are utilizing the
irradiance volume. To showcase the results of the project a dragon figurine has been selected to perform
as test object.

13.2.2 Set-up

The environment maps used in the previous test are used to shade the objects in this test. Furthermore
an additional environment map has been recorded for this test, with a bright sun illuminating the entire

108

13.2. IRRADIANCE SHADING

Figure 13.3: The samples created in the irradiance volume isdisplayed in the lobby scene.

Figure 13.4: The samples created using the modified environment map.

109

CHAPTER 13. TEST

scene through a window. The new environment map is seen in figure 13.5.

Figure 13.5: An environment map with a bright sun.

13.2.3 Results and Discussion

In figure 13.6 on the facing page the dragon figurine is shaded with the originally recorded environment
map, and figure 13.7 on the next page shows the figurine shaded with the modified environment map.
The figurine shaded with the original map looks more realistic than the figurine with the modified
skylight.

In figure 13.8 on page 112 the figurine has been shaded with the environment map with the bright sun,
and the brightness of the shading on the figure is matching up with the brightness on the surrounding
environment. Other effects like shadowing and video noise could possibly be applied to the image
to attain a more realistic looking image. The image furthermore shows that the system is flexible in
regards to camera placement, the camera view is not locked toany fixed point, as long as the system is
told what position the camera is placed in.

In figure 13.9 on page 112 and 13.10 on page 113 the figurine has been placed in two different positions
of the scene, to visually compare if the shading has changed depending on the objects position. The
shading of the object has changed from one image to the next, meaning the irradiance volume has
found different samples for each position. Furthermore figure 13.10 shows that the occlusion handling
has placed the object behind the metal rafter it is positioned behind.

13.3 Radiosity Shadows

13.3.1 Purpose

The purpose of this test is to evaluate the performance of theradiosity part of the system, that generates
the shadows for the objects.

110

13.3. RADIOSITY SHADOWS

Figure 13.6: The dragon figurine is shaded with the originally recorded environment map.

Figure 13.7: The figurine shaded with the modified environment map.

111

CHAPTER 13. TEST

Figure 13.8: The figurine shaded with the sunny environment map.

Figure 13.9: The dragon is placed at two different positionsin the lobby scene selected for the project, for shading
comparison. Shadows are disabled for the shot.

112

13.4. FLEXIBILITY

Figure 13.10: The figurine has been moved to a new position, toshow shading changes, and occlusion handling.

13.3.2 Set-up

The test is carried out in the full implementation of the system. A single virtual object, in this case the
dragon, has a bounding sphere as its shadow casting object. The originally recorded environment map
is used by the radiosity part of the system in this test.

13.3.3 Results and Discussion

Figures 13.11 on the next page and 13.12 on the following pageshows the dragon figurine with a
shadow projected on the floor underneath it.

The sense of placement for the figurine is better, when the shadow is added to the image. Furthermore
the shadows enhances the illusion that the virtual object isplaced within the scene. The shadow pro-
jected for the object is not a precise shadow for the geometryof the object. An improvement on the
shadow casting can further enhance the merging of the two images.

13.4 Flexibility

13.4.1 Purpose

This test is carried out to test the systems ability to perform in other scenarios than the one it was
designed for. The environment for the system is changed to the environment seen in figure 13.13 on
page 115.

113

CHAPTER 13. TEST

Figure 13.11: The object is shaded as if light is coming from above at the same time as the floor is shading from
below, with an added shadow cast by the objects bounding sphere.

Figure 13.12: The virtual dragon figurine has attracted a worshipper.

114

13.5. COMPARISON WITH RENDERED IMAGE

Figure 13.13: The environment map for the group room scene.

13.4.2 Set-up

The test is performed on an implementation of the system without radiosity shadows.

13.4.3 Results and Discussion

In figure 13.14 on the following page the result of placing thefigurine in another and smaller confined
scene is displayed. The shading of the object is dominated bythe lights in the ceiling of the room.

The test shows the systems ability to generically emulate various environment illuminations.

13.5 Comparison with rendered image

13.5.1 Purpose

The purpose of this test is to determine the quality of the shading solution implemented for the system.

13.5.2 Set-up

The test object is rendered in 3D Studio MAX 7’s advanced light tracer renderer using the recorded
environment map. The same object, the dragon figurine, is rendered in the system framework using the
irradiance volume to shade the object. The two images are compared.

The test machine has the following data: AMD Athlon 1800+ processor, 256 mb RAM, GeForce 3
Ti500, Windows XP SP1.

115

CHAPTER 13. TEST

Figure 13.14: The object is placed in a smaller confine, closeto walls. The scene is a group room.

13.5.3 Results and Discussion

In figure 13.15a the rendering performed by 3D Studio MAX is seen, and the corresponding shading
performed by the irradiance renderer used in the system is seen in figure 13.15b.

The two renderings are performed with an albedo of 0.5. The biggest difference between the two is that
the rendering performed by 3D Studio MAX has self-shadowingin crevice-areas of the figurine. This
is not supported by the irradiance volume. The rendering time for the 3D Studio MAX image is 4:47
minutes. The irradiance volume is calculated and the rendering is displayed 2.2 seconds after startup
on the same machine.

The rendering comparison shows that the irradiance volume calculations are performed correctly by the
system.

13.6 Performance

13.6.1 Purpose

The purpose of this test is to evaluate the performance of thesystem, measured in frames per second.

13.6.2 Set-up

The test is carried out in the full implementation of the system. Virtual objects, the dragon figurine, and
a mannequin mesh, is inserted into separate lobby scenes. The frame rate is observed with shading only
and with both shading and shadowing. The object is moved to different locations in the scene.

116

13.6. PERFORMANCE

(a) (b)

Figure 13.15: The figurine is rendered in (a) 3D studio MAX 7 advanced lighting and (b) using the irradiance
volume shader.

The test machine has the following data: AMD Athlon 1800+ processor, 256 mb RAM, GeForce 3
Ti500, Windows XP SP1.

13.6.3 Results and Discussion

The dragon figurine consists of 17477 vertices, and 34951 faces. The irradiance volume algorithm
currently performs a lookup per vertex per face. Each face consists of 3 vertices, so in order to shade
the dragon figurine the irradiance volume must perform 104853 lookups per frame.

The mannequin is defined by 1594 vertices, and 3166 faces. This yields a lookup rate per frame on
9498 lookups.

The radiosity implementation used in the test has 3200 receiving patches, and 50 emitting patches,
which means that the radiosity must perform 160000 intersection tests per frame rendered to the screen.

The performance data can be seen in table 13.1 and 13.2.

Mannequin Shading only Shading and Shadows
Standing still 37 fps 37 fps
Movement 10 fps 0.9 fps

Table 13.1: The performance data for the mannequin model.

Dragon Shading only Shading and Shadows
Standing still 37 fps 37 fps
Movement 4 fps 0.8 fps

Table 13.2: The performance data for the dragon model.

The irradiance performs4·104853 = 419412 lookups per second on the dragon figurine, and10·9498 =

117

CHAPTER 13. TEST

94980 lookups per second on the mannequin model. This shows that the frame rate is partly dependant
on the lookup in the Irradiance Volume.

The initialisation of the radiosity has been measured to take 34 seconds, while the irradiance volume is
initialised in the given scene in 2 seconds.

The data shows that the shadow calculations is the part of theaugmentation pipeline which is the most
computational expensive.

118

CHAPTER 14
Conclusion

This chapter concludes the Real-time Augmented Reality project made by group 922 on the Computer
Vision and Graphics specialisation from the Laboratory of Computer Vision and Media Technology,
Aalborg University.

14.1 Purpose of the project

The goal of this project is to create a real-time Augmented Reality system. The objective of the system
will be to place virtual objects within a real scene, enabling these to interact with existing light, shadow,
and occlusion. The user will be able to interact with both theviewing direction and the virtual objects.

14.2 Methods

In this project, the implementation of a real-time Augmented Reality system, has been explored. The
primary aim has been how to move towards photo-realistic rendering, enabling seamless blending of
the real world and virtual objects, in a real-time system. Two primary areas have received an in-
depth analysis, these are global illumination of virtual objects, and shadow casting, both image based
methods.

The system developed for the project combines information obtained from a standard webcam with
orientation information from a hardware tracking unit, to enable virtual 3D objects to be placed into
the video image. The tracking data enables transformation of the virtual objects with respect to the
orientation of the camera.

The system handles occlusions between the real world and thevirtual objects by the means of a prebuilt
3D model of the environment or scene the application is augmenting.

14.2.1 Modelling scene illumination

The process of rendering realistic shaded augmented objects has been the emphasis of the project.
The project has explored how global illumination can be extracted from images of the surrounding
environment. The process of extracting illumination information and modelling scene illumination is
done in an offline process.

To capture the light information of the scene to be augmented, an environment map is generated using a
stand-alone software tool developed in the project. The tool is able to construct spherical environment
maps of user defined sizes, covering all view angles, automatically. This is done based on images from
a camera with a tracker, registering orientation, fixed to it.

This environment map is in conjunction with a 3D model of the surrounding environment utilised to
generate an Irradiance Volume.

119

CHAPTER 14. CONCLUSION

The Irradiance Volume is a volumetric representation of theglobal illumination within a space based on
the radiometric quantity irradiance. The irradiance volume provides a realistic approximation without
the amount of calculations needed with traditional global illumination algorithms. This approximated
irradiance is utilised to shade the virtual objects within the scene. Because the irradiance volume
generation is an image based method, using an environment map, the objects are shaded based on the
actual radiance from the surroundings.

14.2.2 Shadow casting

To generate the shadows in the image, a reduced radiosity solution is employed. Radiosity calculates
the light energy received by every surface in a scene, takinginto account light bounces from all surfaces.
The solution used in the system creates light emitting surfaces in the areas generating light, based on the
environment map, and light receiving surfaces in the areas of the scene that are likely to receive light.
The light energy for a given emitting surface in the 3D model is based on an intensity measurement in
the matching area of the environment map. The light emitted and received by the various surfaces is
spanning rays throughout the scene. When the virtual objects bounding volume intersects these rays,
the surfaces that where supposed to receive the light, are darkened by the amount the occluded light ray
added to the specific point, thus creating a shadow.

14.2.3 Post processing

When objects have been shaded and shadows have been cast, a post-processing step can be added to
further enhance the illusion that a virtual object is placedwithin the real scene. Various post-processing
methods have been explored. Anti-aliasing of the virtual object removes the jagged and sharp edges
between an object and its surroundings, while motion blur emulates the motion blur effect of the camera.
Video noise can be matched by adding additional noise to the image, improving the illusion that the
virtual objects are in fact a part of the real image.

14.2.4 Dynamically changing environment

The lighting conditions in the scene chosen for this projectdynamically changes during the course of a
day. During daytime the large windows sections provides illumination from sunlight, in the dark hours
incandescent lights are the main illumination sources. Clearly a static environment map will cause the
shaded objects to stand out from the real image, if the scene illumination has changed significantly from
the time the environment map was created. To handle this effects the system must be able to adjust the
environment map to match the current scene illumination. Methods to assimilate these dynamic changes
have been explored, and there are several solutions. A preliminary solution of adjusting the brightness
of the virtual objects by the difference between the offline-recorded environment map and the online
recordable environment have been suggested.

14.3 Results

The irradiance Volume creates samples throughout the sceneaugmented by the system, and uses the
calculated samples to correctly shade the virtual objects that are augmented into the real scene. The

120

14.4. FUTURE POSSIBILITIES

Irradiance Volume bases its resulting shading of objects onan environment map recorded of the envi-
ronment. If the environment changes, the irradiance used toshade the objects does not.

The shading of the objects is updated depending on where in the scene they are placed, and if an object
moves behind a real object present in the virtual model of thescene, the object will appear as if it is
placed behind the real object.

The shadows generated by the radiosity part of the system, iscurrently not able to project an exact
shadow, but adds a sense of placement to the objects, and enhances the merging of the real and virtual
part of the image.

The system is not in any way locked to one scene or one camera placement, but can be used in other
environments than the lobby scene it has been developed for.

The resulting shading of the system is comparable to that of aglobal illumination rendering performed
by a commercial light tracer program.

The creation of the Irradiance Volume is fast in the system, the test has measured the initialisation
time to be 2 seconds. The shading of objects in the system is performed by lookups in the Irradiance
Volume, and observations while performing lookups shows that the frame rate is partially dependant on
the lookups in the volume.

The shadows generated in the system are based on radiosity calculations that are performed in the ini-
tialisation phase of the system. The initialisation is measured to take 34 seconds with 3250 patches.
The online part tests 160000 rays for intersection on the objects per frame, which in the current imple-
mentation has a poor performance, below 1 frame per second, when an object is in motion.

14.4 Future possibilities

This section will explore some of the interesting future possibilities of improvement in the existing
system. The following sections describe both performance enhancing improvements and some new
functionalities for the system.

14.4.1 Tracking and frame grabbing

The magnetic tracker used in this project is limited by both alow resolution and a limited range of
operation. Some interesting improvements to the system includes more accurate tracking and a tracker
with a larger range of operation. A more accurate tracker will reduce the jitter augmented objects are
prone to, resulting in a more realistic appearance. Using a tracker with an extended range of operation,
taking into account not only the orientation of the camera, but also the position could enable the viewer
to move the camera around augmented objects. This has not been an objective in the current project,
but could provide the system with more flexibility.

14.4.2 Environment maps

The limited dynamic range of an environment map created in a standard image format is problematic
when shading objects. To correctly reflect the dynamic rangein real scene illumination it is necessary
to create the environment map using High Dynamic Range Images (HDRI). This entails grabbing two
or more images in the same direction at different exposure times, combining these to a HDR image. It
is expected that HDR images will greatly improve the realismof the shading.

121

CHAPTER 14. CONCLUSION

14.4.3 Illumination and shadow casting

When generating an irradiance volume the resolution of sampling directions is a tradeoff between ren-
dering speed and details captured into the irradiance distribution functions. A low resolution of sam-
pling directions often causes light sources with a small surface area to be completely missed by the
sampler, even though they may represent a powerful light source. This problem may be remedied by
super-sampling during the building of the irradiance volume. Super-sampling increases the possibility
that any given light source is captured, by increasing the sample directions during sampling. When
sampling is finished, the super-sampled data is down-sampled to a lower resolution. This maintains all
the super-sampled data in a lower resolution.

The performance of the current radiosity implementation can be increased by partitioning the entire
scene into a series of bounding boxes. Currently intersection testing is performed in the entire scene on
a per-frame basis. This reduces performance considerably.Building a hierarchy of bounding boxes with
known ray intersections, can reduce the number of intersection tests considerably, thereby increasing
performance.

Another limitation in the radiosity implementation is in the object types that can generate shadows.
Currently the system is only able to generate shadows from spheres. The reason for this is to minimise
the complexity of the intersection tests. To enable more accurate shadowing, a low polygon version
of the object to be shaded could be used. This low polygon object can either be created manually or
a polygon reduction algorithm could be implemented as to automatically generate the shadow casting
object.

122

Bibliography

[iso, 2001] (2001).ISOTRAK 2 - User’s manual. Polhemus Incorporated, Colchester, Vermont USA,
rev. a edition.

[Akenine-Möller and Haines, 2002] Akenine-Möller, T. and Haines, E. (2002).Real-Time Rendering.
A K Peters Ltd, 2 edition.

[Andersson and Akenine-Möller, 2003] Andersson, U. and Akenine-Möller, T. (2003). A geometry
based shadow volume algorithm using graphics hardware.http://graphics.cs.lth.se/
research/shadows/.

[ARTHUR, 2004] ARTHUR (2004). Augmented round table for architecture and urban planning.
http://www.fit.fraunhofer.de/projekte/arthur/index_en.xml.

[Behrens, 1995] Behrens, U. (1995). Opengl reference page.http://www.mevis.de/~uwe/
opengl/glPushMatrix.html.

[Bergen County Academies, 2004] Bergen County Academies, H. (2004). Anti-aliasing.http://
www.bergen.org/AAST/ComputerAnimation/Graph_AntiAlias.html.

[Bouguet, 2004] Bouguet, J.-Y. (2004). Camera calibrationtoolbox for matlab. http://www.
vision.caltech.edu/brouguetj/calib_doc/.

[Cohen et al., 1988] Cohen, M. F., Chen, S. E., Wallace, J. R.,and Greenberg, D. P. (1988). A progres-
sive refinement approach to fast radiosity image generation. Computer Graphics, 22(4):75–84.

[Cohen and Greenberg, 1985] Cohen, M. F. and Greenberg, D. P.(1985). The hemi-cube: A radiosity
solution for complex environments.Computer Graphics, 19(3):31–40.

[Debevec, 1998] Debevec, P. (1998). Rendering synthetic objects into real scenes: Bridging traditional
and image-based graphics with global illumination and highdynamic range photography.

[Elias, 2003a] Elias, H. (2003a). Motion blur.http://freespace.virgin.net/hugo.
elias/graphics/x_motion.htm.

[Elias, 2003b] Elias, H. (2003b). Radiosity. http://freespace.virgin.net/hugo.
elias/radiosity/radiosity.htm.

[Gibson et al.,] Gibson, S., Cook, J., Howard, T., and Hubbold, R. Rapid shadow generation in real-
world lighting environments.

[Gonzalez and Woods, 2002] Gonzalez, R. C. and Woods, R. E. (2002). Digital Image Processing.
Prentice-Hall Inc, 2 edition.

[Greger et al., 1995] Greger, G., Shirley, P., Hubbard, P. M., and Greenberg, D. P. (1995). The irradi-
ance volume.

[Kilgard, 1997] Kilgard, M. (1997). Opengl-based real-time shadows. http://www.opengl.
org/resources/code/rendering/mjktips/rts/index.html.

[LightWorks-User.com, 2004] LightWorks-User.com (2004). Lightworks-user.com.http://www.
lightworks-user.com/hdri.htm.

123

[Madsen et al., 2003] Madsen, C. B., Sørensen, M. K. D., and Vittrup, M. (2003). Estimating position
and radiances of a small number of light sources for real-time image-based lighting.

[Milgram and Kishino, 1994] Milgram, P. and Kishino, F. (1994). Taxonomy of mixed reality visual
displays.IEICE Transactions on Information and Systems, Vol.E77-D Issue.12(1321-1329):9.

[Nettle, 1999a] Nettle, P. (1999a). Radiosity in english.http://www.fluidstudios.com.

[Nettle, 1999b] Nettle, P. (1999b). Radiosity in english ii: Form factor calculations.http://www.
fluidstudios.com.

[openGL.org, 2004] openGL.org (2004). Opengl.org.http://www.opengl.org/resources/
faq/technical/transformations.htm.

[Ramamoorthi and Hanrahan,] Ramamoorthi, R. and Hanrahan,P. An efficient representation for ir-
radiance environment.

[Ruether, 2002] Ruether, D. (2002). On video image characteristics and faults. http://www.
ferrario.com/ruether/vid_pict_characts.htm.

[Sato et al.,] Sato, I., Sati, Y., and Ikeuchi, K.Illumination distribution from shadows.

[Shirley, 1998] Shirley, P. (1998). Monte carlo methods in rendering. http://www.siggraph.
org/education/materials/siggraph_courses/S98/05/c05%.pdf.

[Shirley and Chiu, 1994] Shirley, P. and Chiu, K. (1994). Motes on adaptive quadrature on the hemi-
sphere.

[SigGraph, 2004] SigGraph (2004). Aliasing problems and anti-aliasing techniques.http://www.
siggraph.org/education/materials/HyperGraph/aliasing/alias0.%htm.

[Slater et al., 2001] Slater, Steed, and Chrysanthou (2001). Computer Graphics And Virtual Environ-
ments: From Realism To Real-Time. ADDISON-WESLEY, 1 edition.

[Vignaud, 2001] Vignaud, S. (2001). Real time soft shadows on geforce class hardware.http:
//tfpsly.planet-d.net/english/3d/SoftShadows.html.

[Wallace et al., 1987] Wallace, J. R., Cohen, M. F., and Greenberg, D. P. (1987). A two-pass solution
to the rendering equation: A synthesis of ray tracing and radiosity methods.Computer Graphics,
21(4):311–320.

[Weisstein, 2004] Weisstein, E. W. (2004). Euler angles.http://mathworld.wolfram.com/
EulerAngles.html.

[Wellner, 1993] Wellner, P. (1993). Interacting with paperon the DigitalDesk.Communications of the
ACM, 36(7):86–97.

Part IV

Appendix

125

APPENDIX A
Euler Transform

The Euler transform is the multiplication of three rotationmatrices, denotedA, given by Equation A.1.

A = BCD (A.1)

WhereA is written as

A =









a11 a12 a13

a21 a22 a23

a31 a32 a33









(A.2)

The three rotational matrices are given by Equations A.3, A.4, and A.5.B, C, andD represent the
rotations in figure 6.1 a, b, and c.

B =









cos(ψ) sin(ψ) 0

−sin(ψ) cos(ψ) 0

0 0 1









(A.3)

C =









1 0 0

0 cos(θ) sin(θ)

0 −sin(θ) cos(θ)









(A.4)

D =









cos(φ) sin(φ) 0

−sin(φ) cos(φ) 0

0 0 1









(A.5)

APPENDIX A. EULER TRANSFORM

128

APPENDIX B
Lambertian Shading

Source: [Slater et al., 2001]
This appendix contains a description of the Lambert model, that describes how light affects 3D surfaces.

In computer graphics the ideal shading of surfaces is by utilising a global illumination model, to cal-
culate all lighting in a scene. Global illumination calculates influences from all light sources in all
directions at all points of a 3D scene.

Local illumination: Lambert’s Reflection Model

A way to simplify illumination calculations is by only calculating the most significant influencing lights,
as the peripheral lights has little effect on the illumination. This is called local illumination.

The Lambert Reflection Model is based on local illumination.The model has no base in reality, but is
merely a simple way to obtain shading of 3D objects.

The shading of each 3D surface, may be divided into three categories. Diffuse reflection, which is the
direct illumination of a surface, which makes the surface visible and specular reflection which controls
how the surface shines on surfaces with direct light, see figures B.1a and B.1b. Ambient reflection
controls the illumination of surfaces not affected by light.

(a) (b)

Figure B.1: (a)Diffuse reflection is the direct illumination of a surface, which makes the surface visible. (b)
Specular reflection controls how the surface shines on surfaces with direct light.

To calculate the total light reflection in a scene the three reflections must be calculated for each point.

129

APPENDIX B. LAMBERTIAN SHADING

Diffuse reflection

Diffuse reflection may be calculated with the following equation. The factors are illustrated in fig-
ure B.2:

Figure B.2: The diffuse reflection of the Lambert Reflection Model.

Ir,d = kd · Ii · cosD (B.1)

where:
Ir,d: The resulting intensity value for each edge voxel.
kd: Diffuse reflection coefficient. One for each colour channel.
Ii: Intensity of the incoming light.
D: The angle between the normal vector and the incoming lightvector.
~n: The normal vector to the surface.
~Li: The vector for the incoming light.
~V : The viewing vector.

The diffuse calculations are performed for each colour channel denoted bykd. The calculations are
performed with normalised values, ranging between 0 and 1. With normalised vectors,cosD may be
calculated with the following equation:

cosD = ~n · ~Li (B.2)

Specular reflection

Specular reflection may be calculated with the following equation. The factors are illustrated in fig-
ure B.3:

Figure B.3: The specular reflection of the Lambert ReflectionModel.

130

Ir,s = ks · Ii · (cosS)m (B.3)

with:
ks: Specular reflection coefficient.
Ii: Intensity of the incoming light.
S: The angle between the perfect reflection angle and the viewing angle.
m: Shininess-factor. Ranging from 1 and to values above. Thehigher the value, the more concentrated
the specular reflection will be.
~Li: The angle for the incoming light.
~H: The angle between the viewing angle and the incoming light angle.
~R: The perfect light reflection angle.

These are the same calculations for each colour channels.
ThecosS may be replaced by:

cosS = ~V • ~R = ~n • ~H

Where
~H = ~V + ~Li

By applying the latter replacement the calculations may be simplified, as all factors~n, ~V and ~Li are
known.

Ambient reflection

The ambient reflection is the simplest of the three, as it doesnot incorporate angle calculations. Ambient
is the light that affects all points.

The ambient reflectionIa may be calculated with:

Ir,a = ka · Ia (B.4)

where:
ka: Ambient reflection coefficient
Ib: Ambient light intensity

B.0.4 Total reflection

All factors adds to the total reflection like:

Ir = Ir,a + Ir,d + Ir,s (B.5)

If there are several light sources within the scene, they will have to be calculated one at a time, and the
partial results summed at the end. Light sources has no effect on the ambient reflection, hence this can
be omitted of the illumination calculations.

131

APPENDIX B. LAMBERTIAN SHADING

Ir = ka + Ia +
N
∑

j=1

(kd · Ii,j · (~n • Li,j)) +
N
∑

j=1

(ks · Ii,j · (~n • (~V + ~Li,j))
m) (B.6)

This can be reduced to:

Ir = ka + Ia +

N
∑

j=1

(Ii,j · (kd · (~n • ~Li,j) + ks · (~n • (~V + ~Li,j))
m)) (B.7)

The summations ranges from 1 to N, with N denoting the number of light sources.

132

APPENDIX C
Intersection testing

Source: [Akenine-Möller and Haines, 2002]
When dealing with computer graphics, a basic technique to master is intersection testing. User-controlled
picking, ray-tracing and shadow casting are but a few of the applications where intersection testing
may be necessary. This section examines various methods forintersection testing in three dimensions.
Throughout the various tests described in this section there will be a numerical imprecision, which is
why a very small number will be used in the different tests. This number is denotedǫ, and it’s value
varies from test to test.

Bounding Volume

When a scene full of objects needs to be tested for intersection, it will be very costly test for all faces on
all objects for each ray sent into the scene. To this end a bounding volume can be applied to minimize
intersection costs. The ray will then test the scene for intersection with the bounding volume, and the
objects will only be tested if their bounding volume is intersected. The chance an arbitrary ray will
hit an object is proportional to that object’s surface area.If this area is minimized, the efficiency of an
intersection algorithm is increased.

Sphere Bounding Volume

The simplest form of bounding volume, is to use a sphere bounding volume(SBV). To create a SBV
the center of the object is found and the point in the object furthest away from the center is used as the
radius for the SBV, which is on the usual Sphere formulae:

r2 = (x− x0)
2 + (y − y0)

2 + (z − z0)
2 (C.1)

Axis Aligned Bounding Box

Another simple type of bounding volume to create is an Axis Aligned Bounding Box(AABB). To form
an AABB, the minimum and maximum extents of the set of polygons along each axis is taken, and used
as the bounds for the AABB.

Ray/sphere Intersection

To test for an intersection between a ray and a sphere, both needs to be presented parametrically. The
sphere is represented by equation C.2, and the line by equation C.3:

f(p) = ||p̃ − c̃|| − r = 0 (C.2)

133

APPENDIX C. INTERSECTION TESTING

With p̃ being any point on the spheres surface,c̃ the center point and r the radius.

r̃(t) = p̃0 + t · d̃ (C.3)

Wherep̃0 is the lines starting point and̃d the direction vector. To solve the intersection problem these
equations are combined, wherer̃(t) replaces̃p:

f (̃r(t)) = ||̃r(t) − c̃|| − r = 0 (C.4)

This may be rewritten to:

t2 + 2t(d̃ · (p̃0 − c̃)) + (p̃0 − c̃)2 − r2 = 0 (C.5)

This is a second order equation, and may be solved with:

t2 + 2tb+ c = 0 → t = −b±
√

b2 − c (C.6)

Whereb = d̃ · (p̃0 − c̃) andc = (p̃0 − c̃)2 − r2

The test is: Ifb2 − c < 0 then the ray misses the sphere, and test is rejected, and further calculations
not needed.
solve the rest of equation C.6, and the smallest solution tot is the first intersection. An example is seen
in figure C.1.

mq

r

s+q

s-q
s

c c c

→

0p →
ll

r

d
r

→
d

22 rlll <⋅=
rr

0<⋅ dl
rr

0p
r

l
r

d
r

0p
r

Figure C.1: Notation of the optimized ray/sphere intersection. Left figure: ray intersects sphere in two points
with the distance ist = s ± q along the ray. Middle case is a rejection made when sphere is behind ray origin.
Right case: Origin is inside sphere, ray always hits the sphere.

The pseudocode for an optimized ray/sphere intersection test is:

Ray/box Intersection

To intersect-test an AABB Woo’s method can be applied. The idea is that given a ray and an AABB,
denotedB, the three candidate planes out of the six composing the AABBmust be identified. For each
pair of parallel planes, the one backfacing the ray may be omitted from the further calculations. when
the three planes are identified, the intersection distances, t-values, between the ray and the planes are
found. The largest of these calculated distances is a possible hit, which can be seen in figure C.2. The
distance is tested if it lies on the border of the box, if a hit is found the actual hit-point is calculated.

134

Pseudo code C.1The intersection test between a ray and a triangle

RaySphereIntersect(p̃0, d̃, c̃, r) :
Returns(REJECT/INTERSECT)
1: l̃ = c̃− p̃0

3: s = l̃ · d̃
3: l2 = l̃ · l̃
4: if(s < 0 andl2 > r2) return (REJECT);
5: m2 = l2 − s2

6: if(m2 > r2) return (REJECT);
7: else return (INTERSECT)//

o
d

Figure C.2: Woo’s method for calculating intersection between a ray and an AABB. The candidate planes are
the front-facing marked with bold line, intersects the ray,and the intersect points are marked. The point farthest
away from the origin, or the point with the biggest scalar on the direction vector is a possible intersection

135

APPENDIX C. INTERSECTION TESTING

Ray/triangle Intersection

One of the most applicable intersection tests is the ray/triangle, as all geometric objects consists of
triangles. There exists many different ray/triangle intersection tests. The one described here reduces
the calculations to 2D by transforming the triangle and ray into a system where the axis are aligned to
the orientation of the triangle and the ray using Barycentric coordinates.

With the corners of a given triangle defined bỹv0, ṽ1 andṽ2, a pointt(u, v) on the triangle is given
by the formula:

t(u, v) = (1 − u− v)ṽ0 + uṽ1 + vṽ2 (C.7)

(u, v) are the barycentric coordinates, which must fulfill the ruleu ≥ 0, v ≥ 0 andu + v ≤ 1. (u, v)
can be used for texture mapping, normal interpolation, color interpolation etc.u andv represents the
amount by which to weight each vertex’s contribution to a particular location, wherew = (1 − u− v)
is the third weight. To calculate the intersection between the rayr̃(t), and the trianglet(u, v), the two
are set to equal each other:r̃(t) = t(u, v), which is:

p̃0 + t · d̃ = (1 − u− v)ṽ0 + uṽ1 + vṽ2 (C.8)

This term is rearranged to:

(− d̃ ṽ1 − ṽ0 ṽ2 − ṽ0)









t

u

v









= p̃0 − ṽ0 (C.9)

To find the barycentric coordinates(u, v) and the distancet from the ray origin to intersection point
equation C.8 is solved. This solution may be viewed geometrically as translating the triangle to the
origin, and transforming it to a unit triangle iny and z with the ray direction aligned with x. An
example of this is seen in figure C.3.

Translation

o
r

d
r

0v
r

1v
r

2v
r

02 vv
rr −

01 vv
rr −

0vo
rr

−

01 vv
rr −

)(0
1 voM

rr −−

1−M

Figure C.3: Translation and change of base of the ray origin

M = (− d̃ ṽ1− ṽ0 ṽ2− ṽ0) is the matrix in equation C.8, and the solution is found by multiplying

136

the equation withM−1. Utilizing Cramer’s rule, the following solution is obtained:









t

u

v









=
1

det(−d̃, ẽ1, ẽ2)









det(̃s, ẽ1, ẽ2)

det(−d̃, s̃, ẽ2)

det(−d̃, ẽ1, s̃)









(C.10)

Whereẽ1 = ṽ1 − ṽ0, ẽ2 = ṽ2 − ṽ0 ands̃ = p̃0 − ṽ0.

Linear algebra yields thatdet(ã, b̃, c̃) = |ã b̃ c̃| = −(ã × c̃) · b̃ = −(c̃× b̃) · ã, and from this the
solution may be rewritten as:









t

u

v









=
1

(d̃ × ẽ2) · ẽ1









(̃s × ẽ1) · ẽ2

(d̃× ẽ2) · s̃

(̃s× ẽ1) · d̃









=
1

p̃ · ẽ1









q̃ · ẽ2

p̃ · s̃

q̃ · d̃









(C.11)

With p̃ = d̃× ẽ2 andq̃ = s̃× ẽ1, which are factors used to speed up the calculations.

The pseudo-code for such an operation would be:

Pseudo code C.2The intersection test between a ray and a triangle

RayTriIntersect(p̃0, d̃, ṽ0, ṽ1, ṽ2) : Returns(REJECT/INTERSECT, u, v, t)
1: ẽ1 = ṽ1 − ṽ0

2: ẽ2 = ṽ2 − ṽ0

3: p̃ = d̃× ẽ2

4: a = ẽ1 · p̃
5: if(a > −ǫ anda < ǫ) return (REJECT, 0, 0, 0);
6: f = 1

a

7: s̃ = p̃0 − ṽ0

8: u = f (̃s · p̃)
9: if(u < 0.0 or u > 1.0) return (REJECT, 0, 0, 0);
10: q̃ = s̃ × ẽ1

11: v = f(d̃ · q̃)
12: if(v < 0.0 or u+ v > 1.0) return (REJECT, 0, 0, 0);
13: t = f(ẽ2 · q̃)
14: return (INTERSECT, u, v, t)

137

A
P

P
E

N
D

IXD
S

ystem
C

lass
D

iagram

+Radiosity()
+~Radiosity()
+loadEnvMap(in filename : char*)
+load3dsFiles(in scene : SceneModel*, in emits_ : SceneModel*, in receives_ : SceneModel*)
+findVects(in loRes : int, in hiRes : int, in center : Vector3f&, in radius : float*)

-hiResVec : Patches[]
-loResVec : Patches[]

Radiosity

+IrradianceVolume()
+~IrradianceVolume()
+initializeLUT(in spheremapDimensions_ : int)
+load3dsfiles(in scene : SceneModel*, in bounding : SceneModel*, in objectBounds : SceneModel*) : bool
+loadEnvMap(in filename : char*) : bool
+generateIrradianceVolume(in subGridLevel : int, in sphereMapCenter : Vector3f&) : bool
+getSample(in position : Vector3f*, in sample : Vector3f*) : int

+gridVec : GRID[]
+cellVec : CELL[]
+sampVec : SAMPLE[]

IrradianceVolume

+Isotrak()
+~Isotrak()
+openTracker(in port : char*)
+closeTracker()
+initTracker(in baudrate : DWORD)
+getSingleRecord()
-read(in buffer : char, in bytesToRead : DWORD, out bytesRead : DWORD*)
-write(in buffer : char*, in bytesToWrite : DWORD)

+data : ISOSTATION[]

Isotrak

+Vector3f()
+~Vector3f()

+x : double
+y : double
+z : double

«utility»
Vector3f

+OGLCamera(in bUndistort : bool)
+~OGLCamera()
+undistort()
+initCapture(in bFlipHorizontally : bool)
+getFrame()
+updateCameraOrientation(in target : Vector3f&, in up : Vector3f&)

OGLCamera

+OGLVideoMapper(in pIplImageSrc_ : IplImage*)
+initDisplayQuad(in texID : GLuint)
+drawTexQuad(in texID : GLuint, in cam : OGLCamera*)
-bgr2rgb(inout buffer : void*, in width : int, in height : int)

OGLVideoMapper

3ds

+SceneModel(in filename : char*)
+draw(in type : GLuint, in texID : GLuint)

SceneModel

1

*

1

*

1

1

AAUVideoCapture

1

1

138

