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ABSTRACT:

The purpose of this project is to explore t
possibilities of displaying advanced visual o

jects in a 3D visual data mining system in ar-
der to explore multi-dimensional data sets|i

arbitrary view directions and from arbitrar
view points.

For visualisation of three different test objec
also called glyphs, volume rendering is el
ployed. The technique used is volume sl
ing, which samples a series of textures frg
a volume, perpendicular to the viewing dire
tion, mapping these to a corresponding sel
of plane surfaces. A number of performan

ne

ies
ce

related subjects are also explored. To verify

results, an interview with an expert 3D visu
data mining user is conducted.

A prototype volume rendering enabled 3D
sual data mining system has been develof
With this system, it is possible to visualis
multi-dimensional data sets by using advand
visual objects. For each glyph, different ma|

al

i-
ed.
e
ed

p-

pings of data dimensions to features are possi-

ble.
The report concludes that volume renderi

used in visual data mining is well suited for
visualising a limited number of objects with

many features, while surface based rendel

is well suited for visualising a large number pf

objects with few features. Furthermore, it
concluded that further research in the field
perceptual possibilities could be conducted
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Preface

This report is the documentation of the work of group 822, ftmester specialisation in Computer
Vision and Graphics (CVG) 2004, Laboratory of Computer &dfisand Media Technology, Aalborg
University.

The target audience for this report is 8th semester studertise CVG specialisation.

The report is structured by six parts: Problem domain, sysegjuirements, analysis, design, test, and
conclusion.

The appendix is placed last in the report as is the over albd#ructure of the system.

Source references are on the Harvard-form, an examplesaitHiSherman and Craig, 2003]. Chapters
and sections starting with a source reference is based ©sdhice.

The group would like to thank Ryan Rohde Hansen, Rasmus &terifhe group would also like to
thank Erik Granum for participating in a user interview.

Attached is a CD-rom on which the following can be found:

Report

Source code

Compiled programme

Documentation of source code

Class diagram

Interview

Aalborg University, Denmark. June 2nd 2004.

Mikkel Sandberg Andersen Sanne Christensen

Tommy Jensen Rikke Ottesen
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CHAPTER 1

Introduction

This report is concerned with developing a tool for aiding #nalysis of large multi-dimensional data
sets. The aim of the report is the area of analysis called &/ifata Mining (VDM), which is the
concept of visualising data sets so that features are eagiypreted.

Data Mining

With the development in computer processing and data stdrathe last few decades, storing large
and complex data sets in databases has become very comnese dédta sets may describe anything,
ranging from sales statistics to registration of resuttgnfia scientific experiment. Common for all data
sets are that they typically contain a vast number of recovidk each record having a large amount of
information.

The concept of data mining is to make use of these large, @mpiformation-rich data sets. This
involves various ways of analysing these data sets to disciower-dataset relations or patterns or
anomalies.

The following two sections will briefly describe some of thevdlopments in data mining.

Classical Data Mining

Classical data mining techniques are in some sense an extaistatistics with a few extra additions.
Some techniques used are, artificial neural networks, seaegghbour method and decision trees.

Artificial neural networks Non-linear predictive models, which learn through trainand resemble
biological neural networks in structure. [Haykin, 1994]

Nearest neighbour method A technique which classifies each record in a data set basaccombi-
nation of the classes of the k record(s) most similar to i mistorical data set. Sometimes called
the k-nearest neighbour technique. [Duda et al., 2000]

Decision trees Tree-shaped structures which represent sets of decisitiese decisions generate rules
for the classification of a data set. [Jackson, 1990]
Visual Data Mining

Source: [Cox et al., 1997]

The idea of Visual Data Mining (VDM) is to improve the abilitp make use of large and complex
data sets, building on the fact that people are at the cehlata mining enterprise. Human pattern
recognition skills are remarkable, and by far exceed thalsidity of any existing technology to detect
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CHAPTER 1. INTRODUCTION

interesting patterns and relevant anomalies. By propeking advantage of the human ability to deal
with visual presentations, this technique aid the undedstay of large amounts of data.

Only within the last decade, with the development of VirtRaklity (VR), has it been possible to fully
exploit the possibilities of VDM. This involves enablingethusers to immerse in a real-time visual
presentation of data sets.

The 3DVDM system (3 Dimensional Visual Data Mining systed®@yeloped at Aalborg University by
Henrik Nagel, is a system which enables perceptual repiatsam of statistical data. The reference is
a visual world where statistical observations are reptesein a 3D scatter plot. Each data point in the
plot is shown as a visual object, such that statistical g may also control various visual object
properties such as object shape, orientation, colouracaitiexture, etc. The purpose is to present data
from within, and to allow the human observer as a visual exgolto navigate the visual world, in order
to inspect data in arbitrary view directions and from adsigrviewpoints. [Nagel et al., 2003]

Current technology is also applicable in creating advameatitime 3D soundscapes which may prove
useful. The field of hearing of the human ear is larger tharfitie of view of the eyes, and thus is
able to inform on events happening in areas that cannot be ¢ 3DVDM system provides tools
for using 3D sound to perform general and detailed invesitigaf data visualised in a 3D scatter plot.
With this, it is possible to place sampled sounds or synsieelssounds at any point in the virtual world.
Thus it is possible to attach sounds representing statist@lues to selected objects, or add sound
representation to groups of objects, such as density ctugtaneasurements of density in solid angles
around the users current position.

Volume rendering

The current implementation of 3DVDM displays very simplarface based, visual objects such as
tetrahedra shapes, as representations of records in tltd e goal of this project is to further develop

the rendering technique, as to enable the system to disgla@naed visual objects. Advanced visual
objects have the ability of displaying multiple featureghbexterior and interior in a volume. These

features can be visualised in a more complex manner, thae thiosimple visual objects in terms of

shape and texture etc.. To visualise advanced objectsumealendering technique is well suited. The
technique allows rendering of complex shapes from imagemes (a 3D bitmap image).

Defining the project

The aim of this project is to display advanced objects in a &Dal data mining system, and allow a
human observer as a visual explorer to navigate the systeondér to explore multi-dimensional data
sets in arbitrary view directions and from arbitrary viewins. In order to develop advanced objects,
the conceptual possibilities and the perceptual possdsilof these objects have to be studied. Since the
group does not possess expert knowledge in the area of fiercggychology, this part of the project
will be solely based on available literature.

To explore the possibilities of advanced graphical objegtgolume rendering technique is employed
to render these. The implementation of this will be basedhengraphic Application Programming
Interface (API) OpenGL, as this has been introduced in a staneourse.

To ensure a reasonable performance from the system, vardoagression methods will be studied in
regards to volumetric image data. Furthermore, balangiegd and level of detail, when navigating
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the 3D visual data mining system will be explored.
To verify the results, user tests involving one or more eX@&M users, will have to be conducted.
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CHAPTER 2

Visual Data Mining

This chapter describes the general concept of visual datangu Furthermore, visualisation of data
sets in 3D space is described in terms of object properties.

2.1 General concept of visual data mining

Source: [Card et al., 1999]

Data containing various information may be hard to interpgen looking at it in a database. Therefore
using another way to visualise data is desirable, so thatiptaulfeatures in the data can be easily
interpreted. This can be done by using Visual Data Mining fDThe purpose of VDM is to show,
in an easily conceivable way, multiple features, derivennfra data set, i.e. to map data to a visible
structure.

The typical way to achieve visualisation of data is by follogvthe steps outlined by [Card et al., 1999]
in figure 2.1.

Data Visual form
Raw data » Data tables > Visual »  Views > User
structures
Data Visual Visual
transformations mappings transformations

T T T

Figure 2.1: Visualisation of data achieved by human intéiat Source: [Card et al., 1999].

A set of data is recorded from any source the user wants tgsmarl he data is stored as raw data with
no apparent order. The raw data can have many forms suchessispeets and text.

In order for this data to be visualised, it has to be transéatimto a relation or sets of relations which
have been structured. This way the data is easier to map wiswal form. The new structure is stored
in data tables.

The data transformation is achieved through human iniergcas all data recordings are individual
and cannot be automatically structured into data tableg dEita is structured according to the users
interaction.

In a data table the data may be stored as three different tfpesiables:

Nominal An unordered set

Ordinal An ordered set (tuple)

14



2.1. GENERAL CONCEPT OF VISUAL DATA MINING

Quantitative A numeric range.

Transformation of raw data into structured data tablelfyi involves loss or gain of data/information.
Raw data may contain errors that must be corrected befordatiaecan be visualised. A data transfor-
mation may also contain derived values or structures, agdheformation can incorporate statistical
calculations, which again can add information not previpperceivable.

There are multiple ways to map data into a visual repregentaguch as histograms, curves and plotting
of samples. Itis important to choose the visual represientthat fits best with the data it has to express.

After the data has been formatted into data tables, it has tdpped to visual structures, which is a
spatial substrate that encodes information through mamttgeaphics. This mapping must preserve the
data, and the mapping should be expressive and effective.

The most fundamental aspect of a visual structure is its Usgawe. Spatial position is the best form of
visual coding, that is why the first decision regarding visaion usually is which variables that gets
spatial positions at the expense of others. Spatial pasigiat the same time the most dominant form
of visualisation.

The visual structures are described through axes and tlugiegies, there are three types of axes:

Nominal axis A region is divided into subregions
Ordinal axis An axis with ordered subregions

Quantitative axis A metric axis

All the available information in the raw data is not alwaysualised. Information can be derived from
the raw data, and there are several techniques to incremaettunt of information, that can be encoded
along with spatial position:

Composition The orthogonal placement of axes.

Alignment The repetition of an axis at a different position in space.

Folding The continuation of an axis in an orthogonal dimension.

Recursion A repeated subdivision of space.

Overloading Reuse of the same space for the same data table.

Marks are the visual things that occur in space, and they albymepresent the data that the user
requires visualised. There are four elementary types oksnar

Points Zero dimensional point
Lines One dimensional
Areas Two dimensional

Volumes Three dimensional

15



CHAPTER 2. VISUAL DATA MINING

Points and lines allows graphs and trees to be visualiseb¢amsignify a relation between objects.

There are six standard retinal variables that can be useidualise data. These can be separated into
spatial and object properties:

Spatial Position, size and orientation

Object Gray scale/colour, texture and shape

The separation between spatial and object propertiesgisodihe fact that these properties are believed
to be processed differently by the human brain. These piliepeaare a good basic set for visualisation
purposes, but there are other possibilities as well. Otragreasties include:

Crispness Inverse of blend-distance.

Resolution Grainyness of the displayed object

Transparency How visible the object is

Arrangement If an object is several dots, it is their configuration

Hue/Saturation Colour coding.

Temporal Temporal change in mark position.

Sound Sound may inform on events happening in areas that canneteme s

When the visual structure is composed, the user has to deoigldo display the visual structure. The

view transformation is done through a visualisation enginat can be in 2D or 3D, and have a distinct
way of showing the encoded properties.

2.2 Visual Data Mining in 3D Space

Visual data mining in 3D space is one way of visualising mdithensional data sets by letting an
object in the space representing a data record. Each objekei3D space may be described using
various feature variables, which represent various diinessf the record.

2.2.1 Object variables and relations

Source: [Card et al., 1999]

In order to detect visual tendencies in data sets in the 3Desiiee analyst has to be able to navigate
through this space. Also the data has to be represented exthbj the 3D space, where each object
corresponds to each data record. These objects have varioperties (variables) such as: Spatial
position, shape, size, pose, surface properties, etchvanevisual variables.

Spatial position

The three positional variables, y, andz, form the location of the objects in the coordinate system of
the 3D space. They are continuous variables in the visuakspa

16



2.2. VISUAL DATA MINING IN 3D SPACE

Shape

The shape of the objects may make it easier for the analysteztvisual tendencies in the 3D space,
however detailed geometrical visualisations have to becqapated by planar triangles and thus com-
plex shapes are expensive for the visualisation systemxample of shape is seen on figure 2.2.

P oo

Figure 2.2: An example of a shape morphing between two basiges.

Scale

The scale of an object in the 3D space is described as the eabfithe object. Scale is a variable that
can be used to accentuate visual tendencies, however teeofea object is often used to describe the
distance from the viewer to the object. An example of scageén on figure 2.3.

T L

Figure 2.3: An example of shape scaled between 0 and 1.

Pose

The pose of an object in the 3D space can be described in tdrpenaing, tilting and rotating. A
human, when not informed otherwise, will assume that ancbligeupright. Pose is normally used on
objects to allow orientation to be perceptually noticedugpose can only be applied to objects with
familiar shapes and the shapes are not allowed to be synealetiice changes in pose of a symmetrical
object cannot be observed. An example of pose is seen in figdre

& &0

Figure 2.4: An example of three different poses.

Surface properties

Surface properties may be described as roughness, geefiegtance, and differentiated reflectance
patterns. Roughness is a very expensive property in terraswoélisation unless approximated by a
texture. Studies show that humans attend to the top righineflbjects thus the projected features

17



CHAPTER 2. VISUAL DATA MINING

should mainly be placed on the top right of the objects. Théasa properties colour, texture, and
transparency will be described in the following.

Colour

Colour may be described in various ways such as hue, saturatnd brightness; or red, green and
blue. Studies show that the analyst detect visual tendefi@ter when colour has been applied to the
objects, however the use of more than six colours can seefusing. Applying a black rim on a white
background or vice versa also enhance detection of visndketeies. Generally colour should not be
used as a continuous variable due to limits in the human peraksystem in distinguishing accurately
between hue, saturation and brightness. An example of cid@een on figure 2.5.

B B

Figure 2.5: An example of three different colours.

Texture

Texture may be described in terms of granularity, orieatatand pattern. The use of texture should be
limited since it is limited to perception at a very close raragnd with very few objects. An example of
texture is seen on figure 2.6.

N il;é;g'
" r. e

Figure 2.6: An example of morphing between two basic texture

\1-"
-
s

4

Transparency
Transparency may describe a feature through its degreesibfility. An example of transparency is
seen on figure 2.7.

Figure 2.7: An example of three levels of transparency.
Specular

Specular may describe a feature through its degree of riefidight. An example of specular is seen
in figure 2.8 on the next page.

Spatial relations

Spatial relations between the objects and the analystrdites the spatial distribution. Two concepts
may be used to describe spatial relations: View point depenyd and view point distance.

18



2.2. VISUAL DATA MINING IN 3D SPACE

Figure 2.8: An example of three levels of specular.

View point dependency

To detect visual tendencies, the view point and the viewctioa of the analyst relative to the objects, is
of great importance. The spatial distribution will changpending on the view point. Object properties
such as shape and pose are also view point dependent.

View point distance

The view point distance is the distance from the analystdémthjects observed. This distance may vary
as the analyst navigates in the 3D space. Properties of jeetslthange as the distance vary. Large
distances result in the objects getting smaller and thusldemn the objects are reduced and eventually
they disappear. According to [Granum and Musaeus, ] tharmltists may be defined as:

Close rangeStereoscopic vision is dominating, and details of objecay e distinguished. This ex-
tends up to about 5 m.

Intermediate rangéLarger” object properties may be noticed. This range isbeh 5 and 20 m.
Far rangeOnly very prominent object properties can be perceived aag eventually vanish.

In order to distinguish between the three distances thectsbjmay be available as several models.
Furthermore, the objects may be collected into clusterdbjfabs when observed at great distance.

Temporal relations

When there are changes over time between the spatial reddbietween the analyst and the objects,
temporal relations occur. Two concepts may be used to desteimporal relations: Navigating in a
static 3D space, and temporally varying 3D space.

Navigating in a static 3D space

When navigating in 3D space two situations may occur. Eitmeanalyst is moving around between the
objects or the objects are moving around the analyst. Ther Isituation refers to a stationary analyst
and a dynamic 3D space. For both situations three forms of 8@ommay be described according to
[Granum and Musaeus, ]:

Radial motiorrefers to motion in depth where the observer is moving awawy for toward an object.

Lateral motionrefers to the observer moving sideways in the frontal pldine perspective transforma-
tion of the analyst causes the proximal points to have higtlative velocities on retina (image plane)
than distant points. This phenomenon is called motion [zaabnd gives the observer information
about the relative depth of points.

Rotational motiorrefers to the analyst circling around the object. Percdipttiais corresponds to the
object being turned around in front of the analyst. The dijan refer to a single object or the entire
3D coordinate system with all its objects.

Navigating in a temporally varying 3D space

19



CHAPTER 2. VISUAL DATA MINING

Objects in 3D space may have individual movements such asowtand vibration. This can be used
on data where temporal sampling is an attribute of the statisnformation and therefore should be
visualised in order to show temporal relations.

20



CHAPTER 3

Virtual Reality

The possibilities of Visual Data Mining (VDM) are increagiwith the development of Virtual Reality
(VR), which enables the user to immerse and interact in atigad visual presentation of data sets.
This chapter will describe the concept of virtual realitydaa software framework, VR++, for hosting
VR-applications.

3.1 Definition of virtual reality

Source: [Sherman and Craig, 2003]

The wordvirtual is for instance used in computing systems as extensionsdfdtdware, emulating
the real thing through another source. It is also used tolai@wirtual worlds' where objects exist
virtually in that world. These objects are merely imageshef physical object they represents. The
word reality is defined in different ways. [Sherman and Craig, 2003] siinegl it for the purpose of
virtual reality, and defines it as a place that exists anddaatbe experienced.

The two words combined is virtual reality, which is the siatidn of a real or imagined environment,
that can be experienced visually in the three dimensionsidfhwheight, and depth and that may
additionally provide an interactive experience visuatiyfill real-time motion with sound and other
forms of feedback. The simplest form of virtual reality isla Bnage that can be explored interactively
at a personal computer, usually by manipulating keys or tbasa so that the content of the image
moves in some direction or zooms in or out. As the images bedarger and interactive controls more
complex, the perception of "reality” increases. More sstitated efforts involve such approaches as
wrap-around display screens, actual rooms with wearabigaters, and devices that lets the users
feel that they are mentally present in the display imagesegtample joysticks and data gloves. In
this way users can receive feedback from computer applitatin the form of felt sensations in the
hand or other parts of the body. Virtual reality can be désdtiin terms of immersion, interaction, and
real-time. This may be illustrated as shown in figure 3.1 enfttlowing page.

Immersion is the feeling of being in the 3D virtual space. There are ttates of immersion; mental
- and physical immersion. Mental immersion is defined asddeeply engaged. The physical
immersion is entering the medium of virtual reality. Stiatidn of the body senses via the use of
physical feedback devices.

Interaction is the possibility of moving in 3D space and manipulate witttual objects.

Real-time is action which immediately can alter the virtual space.

*An imaginary space often manifested through a medium.
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CHAPTER 3. VIRTUAL REALITY

Realtime

Virtual Reality

Interaction Immersion

Figure 3.1: Defining virtual reality in a triangle form. Immaon, interaction and real-time are the elements
which define virtual reality. [Thalmann, 2004]

3.1.1 Virtual reality features

Source: [Sherman and Craig, 2003]
Virtual reality is a uniqgue medium because of the featuresni@arising some of the features:

» The opportunity of being multiple simultaneous users.

» The ability to manipulate with time and space.

These features combined in the same medium gives a dynalationship between the participant and
the medium. Figure 3.2 on the next page shows a user in a woain display screen, also called
a cave, interacting with the medium through stereo glasééten viewed through lightweight stereo
glasses, the left/right stereo images are presented s$elyata the left and right eyes respectively,
producing the illusion of 3D objects appearing both withivddeyond the walls of the Cave. The
images are presented with reference to the users view pdiith is continuously updated via a head-
tracking unit; thus even as the user moves around in a Caventhimnment displayed will always be
in a correct perspective. The Cave shown in the figure isdacat Aalborg University and is specially
suited for research and design development.

3.2 VR++

Source:[Nagel and Granum, 2002]
In virtual reality many software and hardware parts have aokvwtogether, to facilitate different ways
of presenting virtual reality and handling user interattio

VR++ is an open-source framework for creating modular VRIliappons and consists of a set of
libraries which make it easier for the user to make diffegoplications. These libraries, also called
add-on packages, contain applications ready to executeuasls graphic-, datapackages etc.. VR++
is a distributed system, based on the master/slave prinaiglich coordinates work amongst multiple
processes. To fully exploit the possibilities of distribditcomputing, these processes can be placed on
different machines. In the system a single master distibthe various processes to multiple slaves.

22



3.3. SURFACE BASED RENDERING

Figure 3.2: A user in a wrap-around display screen interagtwith the medium through stereo glasses. Source:
[vrl, 2002].

Each slave processes an assignment by the use of a certainAtdask is an implementation of an
algorithm and is given processing time by the slave to whidieiongs. The tasks communicate with
each other through a standard data interface, so that teskfoged for VR++ automatically becomes
compatible with each other and thereby make it easier féergifit users to integrate several projects.

3.3 Surface based rendering

Source: [Shreiner et al., 2003]

As mentioned before 2D geometric primitives is how a 3D dhbigcepresented. All geometric primi-
tives are eventually described in terms of their verticesordinates that define the points themselves,
the endpoints of line segments, or the corners of polygaime).

Three common geometrically (surface) based graphicaksgmtations are the polygonal, which is
mentioned in appendix A, non-uniform rational B-splinesJRBS), and constructive solid geometry
(CSG) schemes.

Polygonal can be used to represent shapes described by NURBS and GlsgBighl with some loss
of information. Many algorithms designed to speed up pahga@endering methods have been
integrated into hardware geometry engines and, as a reaudiyare graphical rendering systems
almost exclusively make use of the polygonal method.

NURBS are parametrically defined shapes that can be used to desaribed objects.

CSG are objects created by adding and subtracting simple sligplesres, cubes, cylinders, etc.).

23



CHAPTER 3. VIRTUAL REALITY

3.4 Non-surface Based Rendering

Source: [Volumizer, 2004]

Surface based methods work best with solid, non transpatgatts. When surfaces are transparent,
surface based rendering techniqgues may not be the besectiigis particularly true when a space is
occupied by varying densities of semi translucent matéeia., patchy fog or the human body when
viewed via X-rays or MRI scans). In such cases, non-surfased) methods may offer certain advan-
tages when representing objects in a computer based wivarad.

3.4.1 Volume Rendering

Volume Rendering is well suited for rendering semi transpaiobjects. Volume Rendering is the
process of generating an image directly from the volume wéteout the generation of an intermediate
geometric model. Typically this is done by mapping the datles in the volume to the colour and
opacity of an imaginary semi-transparent material, and teadering an image of this material. Data
values of interest can be assigned high opacity values apdadifis colour to highlight their location
within the volume while other data values can be assigneddpacity values to reduce their visual
importance. It is also possible to render geometric andmettic primitives together, allowing the
inclusion of geometric primitives such as coordinate axeb@ther reference objects. This technique
is useful for displaying relationships between areas @frest that are not well defined in a geometric
sense. Itis also useful for displaying the volume aroundsiof geometric interest, such as the volume
near an isosurface.

In the following, four Volume Rendering techniques are diésdl in terms of Fourier Volume Render-
ing, Splatting, Shear Warp Factorisation and Volume Sjicin

Fourier Volume Rendering

Source: [Lichtenbelt, 1995]

Fourier Volume Rendering (FVR) computes projection of a¢hdimensional data set and is faster
than a conventional volume rendering method, because thelegity is reduced. This is done by first
transforming the data set into the frequency domain by edt8D Fast Fourier Transform (FFT) or the
Fast Harley Transform (FHT). Then the projection image isegated directly from the volume data
at any viewing angle by resampling along a plane perperatidol the viewing direction, and taking
the inverse 2D transform of the resampled plane. The piojectn be used to visualise 3D data sets.
The Fourier projection slice theorem also holds in higharatisions. For the 3D case it can be stated
as follows: The 2D Fourier transform of a 2D projection of a @b)ect, at an arbitrary angle, is a 2D
plane passing through the origin of the 3D Fourier transfofrthat 3D object, at the same angle. A
projection is a mathematical operation, to be compared takimg an X-ray picture of a 3D object. A
ray is cast through the data set, and samples are taken enayt Those samples are composited into
a pixel value and projected on the screen.

The advantage of FVR is that the 3D Fourier transform onlytbdse computed once.
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3.4. NON-SURFACE BASED RENDERING

Splatting

Source: [Silva, 1995]

Another volume rendering technique is to reconstruct argeanimom the object space to the image
space, by computing for every voxel in the data set, its daution to the final image. This technique
is called Splatting. The projection of each voxel onto thalfimage leaves a fuzzy impression, called
a footprint or a splat. Splatting classifies and shades tkelsqrior to projection, and thus each voxel
splat is weighted by the assigned voxel colour and opacitye resulting image is a uniform screen
image for homogeneous object regions. However, due to wyfappearance of the splats the edges of
the object appears blurry.

Shear Warp Factorisation

Source: [Lacroute and Levoy, 1993]

This algorithm combines the advantages of image-order bjgtorder algorithms. Image-order al-
gorithms operate by casting rays from each image pixel andgssing the voxels along each ray. The
advantage is efficient and high quality resampling, but tteegssing order also has the disadvantage
that the spatial data structure must be traversed once éoy eay, resulting in redundant computation.
In contrast, object-order algorithms operate by splattioxgls into the image while streaming through
the volume data in storage order, which speeds up the progesgher advantage is the simpler ad-
dressing arithmetic. The disadvantage of the processitgy @ that it is harder to implement effective
optimisation in ray-casting algorithms.

Mapping from object space to image space requires hightgddiering and projection in the object-
order algorithm and extra addressing arithmetic in the Epagler algorithm. To avoid these problems
it is being solved by transforming the volume to an interragglicoordinate system, a sheared object
space. This is based on a factorisation of the viewing mattixa 3D shear parallel to the slices of the
volume data, a projection to form a distorted intermediatage, and a 2D warp to produce the final
image, as shown in 3.3. For a perspective projection each isliscaled.

snear

b b

viewing rays

volume
slices

warg

Figure 3.3: To transform a volume into sheared object spaceafparallel projection, the slices has to be
translated. Source: [Lacroute and Levoy, 1993].

The advantage of Shear Warp Factorisation is that scantihttee volume data and scanlines of the
intermediate image are always aligned, which can be seeguref3.4 on the next page.

The Shear Warp Factorisation allows implementation of ceree optimisations for both the volume
data and the image with low computational overhead, bechatedata structures can be traversed
simultaneously in scanline order.
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CHAPTER 3. VIRTUAL REALITY

1. shear &
resample

intermediate
.~ image scaniine

{ 3.owarp &
2. project resample

.
& composite N \
?\

vaxea!
scahiine —

intermedliate image final image

vorel slice

Figure 3.4: First the volume is transformed by translatingdaresampling each slice. Then voxel scanlines are
projected onto the intermediate image scanlines. Findlyintermediate image is warped into the final image.
Source: [Lacroute and Levoy, 1993].
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cHAPTER 4

Current research

This chapter describes other projects researching 3D Vidat mining using volumetric objects in 3D
space.

The following sections outlines the methods described i diNferent research papers. However, the
four papers describe the research done on the StereosdefulddRalyzer, and thus are all desribed in
one section.

Iconic Techniques for Feature Visualization

Source: [Post et al., 1995]

The paper studies a conceptual framework and a process fieodeature extraction and iconic visu-
alisation. The visualisation of the icons is based on thelpip shown in figure 4.1.

Fiel
Data generation ield data

Feature extraction
attribute
calculation

Attribute sets

Iconic mapping

Display

Figure 4.1: The pipeline used to visualise icons. Sourcesfret al., 1995].

i Visual primitives

For each data set features are extracted, if they are of sslevans for the system. For each of these fea-
tures attributes are calculated. An attribute is a chargtiteparameter of the feature. In the studie the
result of the feature extraction and attribute calculaisoa set of attributes, which characterize the fea-
ture. The iconic mapping of an attribute set is a mapping efttributes onto the parameters of icons.
This is done in order to visualise features by objects in argberceivable way, in which there should
be some similarity relation between the features and theinic representations. [Post et al., 1995] di-
vides the attributes into three different categories: GetaaiMorphological attributes, data attributes,
and combined morphological/data attributes.

Geometric/morphological attributes describe the spatial propoerties of a feature such as heigtth,
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CHAPTER 4. CURRENT RESEARCH

volume, centroid, and shape.
Data attributes describe the properties of the data over a feature such asenand maxima.

Combined morphological/data attributes describe both spatial and data properties of a feature such
as center of gravity in a density field.

The modelling of icons is performed by a modelling languageetbped by [Post et al., 1995] with

which the geometrical primitives can be defined and the perars of these primitives can be bound
to the attribute set. The construction of the geometric piries is performed in three steps, which, by
[Post et al., 1995], are:

1. A 2D contour in thez-y plane is designed and colours or colour-maps are boundgcaémtour.
This contour can consist of line-segments or parametrictions. The coordinates of the line-
segments, the constants of the parametric functions, axbiburs or colour-maps can be bound
to the attribute set.

2. This contour is extended to a 3D object by performing a rotaiweep around the or y axis,
performing a translation sweep by moving the contour alomgueis over a given length, or
performing a general sweep along a arbitrary 3D trajectbhe parameters of the function that
defines the 3D trajectory can also be bound to the attributes.

3. This 3D object is scaled, translated, rotated or deformedthis way the objects can be put on their
location in the data set or to their relative location in a ptar object. The values defining the
rotation, translation, scaling or deformation are alsorfabio the attribute set.

Stereoscopic Field Analyzer

The studies regarding the stereoscopic Field Analyzer |3f&&e been performed through several
years by several different people. The SFA allows the visatibn of both regular and irregular grid
of volumetric data and combines glyph based volume rengevith two-handed minimally-immersive
interaction metaphor. The SFA is able to encode up to 8 atathper glyph, based on the glyph’s
location, 3D size, colour, and opacity. Four papers deahitg the SFA have been analysed. These
are:

Data Visualization Using Automatic, Perceptually-Matied Shapes, [Shaw et al., 1998].

Minimally-immersive Interactive Volumetric InformatioVisualization, [Ebert et al., 1996a].

Two-handed Interactive Stereoscopic Visualization diElet al., 1996b].

Procedural Shape Generation for Multi-dimensional Dasu&lization, [Ebert et al., 1999].

In the following the studies regarding volume rendering gisdialisation of glyphs in each paper will
be described shortly.
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Data Visualization Using Automatic, Perceptually-Motiva ted Shapes

Source: [Shaw et al., 1998]

This paper studies the extension of SFA by glyph renderindp wiher visually salient features to
increase the number of data dimensions to be visualisedtaineously. The feature applied to the SFA
is shape in terms of superquadrics. The shape of an obje® is ®rmed by the objects curvatures.
[Shaw et al., 1998] states that the curvature has a visuat,osthce a surface of higher curvature look
more jagged than a surface of low curvature. Furthermosesidted that a generation of glyphs, which
interpolate between extremes of curvature allow the usezdd scalar values from the glyph'’s shape.
Each glyph in the extension uses normalized data in the rfhije which is mapped into the domain
of the corresponding glyph attribute.

Minimally-immersive Interactive Volumetric Information Visualization

Source: [Ebert et al., 1996a]

This paper studies the general concept of SFA regardingnre#tion visualisation. The information
visualisation is performed using glyphs’s location, sgtegpe, colour, and opacity. It is stated that the
system minimizes the occlusion problems of surface rendesind some volume rendering through
the use of glyph rendering, transparency, interactivitgren-viewing, interactive manipulation, and
interactive volume segmentation and subsetting. Furtbegrthe SFA allows several different data sets
to be visualised at the same time in the same coordinatensysteking comparison of trends among
related data sets possible.

Two-handed Interactive Stereoscopic Visualization

Source: [Ebert et al., 1996b]

This paper studies the general concept of SFA regardingcasgrol. SFA offers control of the visual-
isation in numerous ways, including selection of the glygtetand data set mapped to glyph colour.
In order to control the colour, three colour tables are udegending on the properties of the data file
and the number of data files being displayed. For grids with pasitive or negative scalar values, any
pseudocolour table may be used. If both negative and pesitilues are to be displayed, the scalar
value 0.0 is mapped to colour 128 and the maximum magnitudeged to colour 255. This results
in a symmetric colour table about the 128th entry. The thaldur table is used for displaying several
data sets a once. It is possible to map one colour to each etaddi®ving the data sets to be visually
separated. [Ebert et al., 1996b] states that the user tiypataose a distinguishable hue for each data
file, with the colour ramping from low to high saturation. Ewermore, the user is able to choose to
concentrate on a particular subset of the volume and to ehmaly then!” grid points to be displayed,
reducing the number of glyphs drawn.

Procedural Shape Generation for Multi-dimensional Data Vi sualization

Source: [Ebert et al., 1999]

This paper studies the extension of SFA by glyph renderimggushape as a feature. As mentioned in
[Shaw et al., 1998], the curvature information of a shape hedy distinguish shapes from one another.
The paper studies three different procedural techniqueshfo generation of glyph shapes: Fractal
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detail, superquadrics, and implicit surfaces. The maim idkfractal detail is to generate distorted
versions of a basic shape e.g. where low data values map $ie ds@mpe and high data values map
to very perturbed shapes. In order to create the deviatidheobasic shape, displacement mapping
is used. [Ebert et al., 1999] suggests the use of supergsagthich can allow from one to two data
dimensions to be visualised with shape. Superquadrics d¢orfaair main families: Hyperboloid of
one sheet, hyperboloid of two sheets, ellipsoid, and torfidbert et al., 1999] chooses superellipses
for implementation due to their familiarity. Furthermoiebjert et al., 1999] suggests that supertoroids
could be used to represent negative values of a data set padebipsoids could represent positive val-
ues. Using the superellipses, exponents are assignedttigitrometric terms of these. The exponents
allow continous control over the characteristics of thepghim the two major planes, which intersect
to form the shape. In figure 4.2 the varying of the exponergsltieg in a smooth, understandable
transition in shape, can be seen.

Figure 4.2: Variation of the exponents in superquadricaurBe: [Ebert et al., 1999].

Implicit surfaces use an underlying density field to repnés®lumetric information. Implicit tech-
niques provide smooth blending functions for individuabpirit field sources. Isosurface generation
techniques are used to create a geometric representattbis #blumetric density field. With the im-
plicit shape visualisation it is possible to map up to 14 dfitaensions to uniformly spaced vectors
emerging form the center of a sphere. The length of the vea@caled based on the data value being
visualised.
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CHAPTER D

Current software

This chapter describes the current software available fee in the field of 3D visual data mining
systems, and software available for volume visualisatigpliaations.

The following sections describe the 3DVDM system, whictdsapplications for virtual reality in the
field of visual data mining, and the OpenGL volumizer whiclarsapplication programming interface
designed for volume visualisation applications.

5.1 The 3DVDM system

Source: [Nagel et al., ]

Technology to store and process large amounts of data hamydbe last few decades improved dra-
matically. This has led many companies to store ever ingrgasmounts of customer information in
large databases. The hope has been that it would be possitilecover unknown relationships in the
data, and thereby obtain a knowledge which can give comalexdivantages. However, finding hidden
relationships in large amounts of data is not easy. Puratyemical methods have been supplemented
with visual methods. This has led to the emergence of VisaghMining (VDM).

The 3DVDM system extends the field of VDM with virtual realitychniques to create new methods
for exploration of data in VR. The system is able to mine lalgtabases by combining facilities for
advanced VR with expertise in database systems, statiatiedysis, perception psychology and visu-
alisation. Researchers in the database area are resjgoimsibbndling and delivering large amounts of
data from databases. Statisticians are responsible fan@indteresting problems, creating statistical
models for data analysis, and guiding the entire projeckpeaments of 3DVDM system. Perception
psychology researchers are responsible for finding waysaod gnteraction and human perception of
the VR environment.

The 3DVDM system is a collection of VR++ applications, whiisha software framework, and is
explained in section 3.2 on page 22. The 3DVDM system is baraalvisual world, where statistical
observations are represented in a 3D scatter plot and shmogithier a 6-sided Cave,180° Panorama,
and on regular computer monitors. Each data point in theiplshown as a visual object, such that
statistical variables may also control various visual cbj@operties such as object shape, orientation,
colour, and surface texture. The purpose is to present datavlithin and to allow the human observer
as a visual explorer to navigate the visual world, in ordeénspect data in arbitrary view directions and
from arbitrary viewpoints.

5.2 SGI OpenGL Volumizer

Source: [Volumizer, 2004]
The OpenGL Volumizer is an application programming integf@API) created by Silicon Graphics Inc.
(SGI), enabling a programmer to create hardware optimipptcations for several platforms with a
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single code base. OpenGL Volumizer is designed for volureealisation applications and is a toolkit
built on top of OpenGL. Volumizer uses a technique similarayp casting, called volume slicing, to
leverage the texture mapping hardware many workstationshawe.

Viewport-Aligned 3D Texture Final Image
sampling planes sampling planes after Back-to-Front
compositioning

Figure 5.1: Processing a volume through volume slicing.r&euVolumizer, 2004].

In Volumizer, all points on a plane, orthogonal to the linesafht, are computed sequentially in the
texture mapping hardware.

In this technique the volume is sampled in surfaces orthalgtinthe viewing direction as shown in
figure 5.1. When the rays have intersected the points aloegptame the volume is processed. The
distance is incremented and the processing occurs agairgitgoints on all the rays in the new plane.
Processing the points continues until the plane of pointgemdeyond the viewing frustum, at which
point the processing terminates.

The advantage of volume slicing is that it is faster than &sting because computations are performed
by the dedicated texture mapping hardware, whereas rapmgastperformed by the CPU. For further
details about SGI OpenGL Volumizer, see appendix B.
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CHAPTER O

Analysis of Requirements

In this chapter the delimitations, perceptual requirenseind technical requirements of the visual data
mining system are defined.

Delimitations of the Project

Due to lack of resources this project can not cover all aspetthe various volume rendering and
visual data mining techniques. Therefore, only volumergli@and shear warping will be analysed as
volume rendering techniques. Furthermore, the only datengitechnique that will be analysed is 3D
visual data mining. The analysis of visualisation of olgastfounded on earlier research, as perception
psychology is beyond the scope of this project. Given thgeptainit description for 8th semester
CVG, virtual reality and the VR++ framework will not be fughanalysed. Furthermore, due to lack
of resources, the graphical user interface and the varieetntques used to create a graphical user
interface will not be analysed, and thus only a simple gregihiiser interface will be designed and
implemented.

Perceptual Requirements

The perceptual requirements for the system are:
» From a perceptual point of view, the system should expresaamny feature dimensions as per-
ceptually clear as possible.

» The level of detail of the objects should be high enough oogveal that the objects are actually
simple geometry with transparent textures.

» When navigating through the 3D space, the perceptual remeint is a frame rate, that gives the
impression of flying between the objects.

Technical Requirements

Rendering framework

When using hardware accelerated graphics on severaldaiffeperating systems, only one Application
Programming Interface (API) exists, Open Graphics Lib@penGL). To minimise problems when
using the system with different operating systems, usingr@b. in conjunction with the windowing
package Graphics Library Toolkit (GLUT) is ideal for ensigriminimal operating system dependent
adaptations.
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When visualising database records as objects in 3D spaae #ine two possibilities: Rendering the
entire 3D space as one volume, or rendering each object dara&o

Rendering the entire 3D space as one volume

The approach of rendering the entire 3D space as one volusaéisgén a set of requirements to the
visualisation system. The primary requirement is for tteohation of the volume. Each object is a very
small part of the entire volume, and if a large amount of defar each object is required, the resolution
for the entire volume has to be very high. If the resolutiomhaf volume is very high, the requirements
to the memory used to store the volume is proportionally highis the CPU time required to render
the scene.

The OpenGL-language can only handle textures with a maximasolution of 256x256. This means
that in order to visualise a high resolution volume, with aayrlevel of detail, the system is required
to subdivide the rendering of the volume into subregiongraer to maintain an acceptable level of
detail.

The advantage of rendering the 3D space as one volume isnbattbe 3D space volume has been
created, the system can handle an infinite amount of objasthie requirements to the system remain
the same no matter how many objects that are to be visuall$gsl ensures the designer total freedom
in the possibilities of expression.

Rendering each object as a volume

When utilising the one volume per object approach, the requénts to the system memory is propor-
tional with the amount of objects and the resolution of eaglume. This means that the amount of
available system memory sets the limitation to the amounbggcts and their resolution.

The rendering time for this approach may, if all objects aredered with the highest level of detail, be
very high. If the level of detail for each object and the leskEbheometry complexity are reduced, it is
possible that the navigation in the 3D space can be optim@éselow the objects while navigating.

Discussion

The perceptual requirements are the basis for the selaftimethod. The following table is a summary
of the advantages and disadvantages for the "one volumebaqip

Advantages Disadvantages
-No limitation in the amount of objects -With high level of detail the memory
visualised requirements are high

-Always uses the same amount pfNavigation will be very CPU intensive
memory independent of the number jof low frame rate
objects

A similar table can be set up for the "one volume per objecgragch.
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Advantages \ Disadvantages
-Level of detail can be varied for eagh-The memory sets a limit to the amount
object of objects

-Navigation may be possible without
too much CPU time

Both methods are equally effective, in being expressiveefmh object. However, the "one volume"
method may have an infinite amount of objects, whereas the Volume per object" method has a
finite amount in terms of memory usage.

If the "one volume" method is to be utilised with a high levetletails, the amount of memory required
to visualise the objects is very large.

To exemplify this the following comparison a scenario hasrbereated:

Example: The values used in this example are just for this example aamahot requirements for the
system.

If, for each object, a voxel space with the dimensiéis< 64 x 64 is required, and the ratio between
the object size and the 3D space is seit td 28, the "one volume" approach requires a voxelspace with
(64 - 128)% ~ 550 - 10° voxels. If each voxel is a 32-bit value the required memorsttoe the volume

is:

(64 - 128)3
32- (64 - 128) e
8-1024 - 1024 - 1024 - 1024

For the same amount of memory the “"one volume per object oagprwill with the same dimensions
for each object, be able to storgs?® = 2,097, 152 different records.

As the example shows, the only case where the "one volumeabagip has its advantage memory-wise,
is when the 3D space is filled to the limit with objects. Theéaolume" stores a lot of waste space,
whereas the "one volume per object" only saves the voxels avitontent. Though the "one volume"
approach is more flexible as to the amount of objects, the Yoheane per object" approach is more
efficient in its storage of these.

When the system navigates through the 3D space, the "onmeblmnethod is not very efficient, as the
system has to evaluate a large number of voxels for each frelmeever the "one volume per object”
method has wide possibilities to degrade the level of detaileach object when navigating, or simply
just displaying a bounding box for each object.

6.0.1 Conclusion

The "one volume per object" approach is through the abovepacisons the best method of visualising
the 3D space. With this approach each object can have a highdé detail, that expresses many
features, dependent on how the visualised objects arergesid he approach allows a creative solution
on the navigation problem, as each object can be renderedasely. The "one volume per object"

approach is memory-effective, it only stores volumes fa tibject and not for the space with no
objects.

Based on this evaluation, the "one volume per object" ampraeill be chosen as the method with
which the objects are to be visualised. If this method is engnted dynamically, it can also be used

36



to support the "one volume" approach.
For implementation OpenGL will be used.
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CHAPTER [

Specification of Requirements

Introduction

In the specification of requirements a description of thdesys which systematically sets out the re-
quirements, is prepared. The requirements are based onrdiBepn domain, the analysis of require-
ments. The specification of requirements is based on the SRtbch(Struktureret Program Udvikling).
Source: [Biering-Sgrensen et al., 1988]

Purpose

The initial hypothesis of this project is that the abilitydisplay advanced objects in a 3D visual data
mining system will aid the process of exploring large data.se

The hypothesis entails developing a rendering engine,talidesplay advanced graphical objects. For
this engine an OpenGL based volume rendering engine is gig. ba

References

The requirements in this specification are based on the sinaby requirements, see chapter 6 on
page 34.

General description

In the following the system will be described in terms of thadtionality of the programme, the limi-
tations of the programme, and the future of the programme.

Description of the system

The aim of the project is to develop a system with the abibtgisplay advanced objects in a 3D visual
data mining system. In order to do this a volume renderingnenigas to be developed. Volume ren-
dering is a technigue which allows rendering of complex skdpm image volumes. The appearance
of the advanced objects is controlled by the object featir@ghich data dimensions are mapped. The
user must be able to remap the data dimensions to otherdsatturthermore, the user has to be able
to navigate through the 3D space.
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The functionality of the programme

The overall structure of the programme may be seen in figdreThe input to the system is normalised
data from a database, with values between 0 and 1. The negadalata is mapped to visual structures
depending on the various features of each record. The ugbe aystem will be prompted to choose
which feature dimensions to be visualised and how and furtbee the user has to be able to remap
dimensions of the data set to features. The final structues to be visualised as volumes in 3D space.

Input Data —|  Visual Mapping > Visualization

Figure 7.1: The overall structure of the programme.

For each data set a specified number of features must be shownspecified type of object. As
described in the analysis of requirements, chapter 6 on pagthe system will be made so that each
object is rendered as one volume. Due to this, the progranamdadbe capable of rendering each
volume and of producing a frame rate, which gives the impwass flying when navigating through the
3D space. Depending on the placement of the view point, tomgey representing each object must be
reduced proportionally to the distance of the view pointe Slistem utilises orthogonal projection as it
is not important to get a perspective view of each recorddeioio get a good perceptual understanding
of the entire 3D space.

Based on the description of the functionality of the prograamthe overall structure of the programme
may be described by the flow diagram seen in figure 7.2

Figure 7.2: The overall flow diagram of the programme.

The limitations of the programme

When navigating through the 3D space, the system is limiteohty rendering simple geometry for
each volume. This is done to display the volumes in real-time

The future of the programme
The programme is developed so that it may be used as a gewengboent in the VR++ software

framework. This way it may be used to visualise any kind oad#&turthermore, the programme is to
be integrated with the 3DVDM system, so this system can lisiaore complex shapes.
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Specific requirements

Definitions

The following definitions will be used in the programme:

The resolution of the voxelspaces and the dimensions ¢f ea®Ispace in 3D space will be user
defined.

» The colour channels applied to the voxelspaces are 32 AR®ed Green Blue Alpha, channel
order).

» The ratio between the object size and the 3D space will bedefmed.

» The requested frame rate during navigation is 15 fps.

Functional requirements

Each step of the programme shown in figure 7.2 on the precedigg will be described in the following
in terms of input, functionality, and output.

User interface

Input

Interaction from the user of the system.

Functionality

Allows user to determine object type, how data is mapped jecblieatures, and which features that
are to be visualised.

Output

A definition of which dimensions that are to be described wittich features.

Generate volumes

Input

A definition of which data dimensions that are to be mappedHizhvobject features. Furthermore, the
step has normalised data as input.

Functionality

Generates the visual structures for each record and staesds volumes.

Output

Volumes.

Volume
Input

Volumes generated by the generator.
Functionality
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Storage for volumes.
Output
Volumes.

Render volumes

Input

Volumes. View point. Notification of end of navigation. Léwé detail.

Functionality

This step makes the view point specific geometry and textiikations for all volumes in a specified
detail level.

Output

Textures and geometric objects.

Navigate

I nput

View point. Interaction from the user, indicating movemetithin the visualisation

Functionality

This step makes new geometry and texture calculationslfeolaimes in low detail, to maintain a high
frame rate during navigation. When navigation stops,Rleader volumesstep is notified to make
calculations.

Output

Textures and geometric objects. NotificatiorRender volumesstep.

Draw

I nput

Textures and geometric objects.
Functionality

Draws the geometry and texturizes it.
Output

A visualisation of the data.

External user interface requirements

User interface
The functional requirements for the user interface areipddn four main functionalities:

Object: User is prompted to choose between various visualisatigectsh
Feature mapping: User is prompted to choose which data dimensions are mappsijdct features.
Number of records: User is prompted to choose the number of records to be viaahli

Mouse clicks: The system has to be able to detect mouse clicks on objedtamilie 3D window.
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A more specific description of the user interface may be seehapter 12, 12.6.
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CHAPTER 8

Acceptance test specification

When the programme has been implemented an acceptancithessygstem is performed. The purpose
of the acceptance test is to control the functionality ofgthegramme specified in the specification of
requirements, chapter 7, section 7.

The specific requirements for the system are:

The structures have to be visualised as volumes in 3D space.

User is prompted to choose between various visualisatipects.

User is prompted to choose which data dimensions are mappsiect features.

User is prompted to choose the amount of records to be ssdial

The user has to be able to navigate through a visual refedgenof the a given data set.

The requested frame rate during navigation is 15 fps.

Test cases

The test cases are divided into three groups: functiongéyformance, and object perception.

Functionality

The functionality of the programme is tested through two ¢ases. The two test cases are:

Mapping is testing a normalised data set, which consists of 50 reowitth 4 data dimensions for each
record. If the data dimensions are mapped correctly to heifes the test is successful.

Continous remapping involves testing whether continous remapping of data dsioes to object fea-
tures is possible. The test is a success if remapping ocounsctly.

Performance

The performance of the programme is tested through two &s&isc The two test cases are:

Frame rate the frame rate is tested in both navigational mode and hifjhilen mode, with a scene
containing 50 glyphs and a scene containing 1000 glyphs.

Reslicing the reslicing time for a scene containing 50 glyphs and fareme containing 50 glyphs is
tested.
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Perception

The perception of the programme is tested through one tesscdhe test case is:

Object perception the object perception in the system is tested using selsictases from the article
[Raja et al., 2004].



Part Il

Analysis
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Introduction

The aim of the project is to allow display of advanced objegdth a 3D visualdata mining system. Some
advantages of combining volume rendering with visual datdng are the ability to display advanced
objects both interior and exterior, which increases thesipdiy of mapping multi-dimensional data
sets to features.

When developing a system, which is capable of displayinguaded objects, three main concepts are
to be analysed:

» Perceptual possibilities
» Conceptual possibilities

» Performance

In the following the three concepts will be described brigfyrthermore, a graphical user interface for
the project will be described.

Perceptual possibilities

The perceptual possibilities will be analysed by defininge¢htest objects to be used in the project
based on various visualisation features. The mapping ofdaatires onto an object is founded on
earlier research, as perception psychology is beyond tigesaf this project.

Conceptual possibilities

To visualise the objects a volume rendering technique willbed. The fundamentals of this technique
is to slice each volume into a number of planes to which a textimapped. The volume rendering
techniques being analysed are volume rendering using geaametry, volume rendering using 2D
texture stacks and shear warping. Additionally, shadinthoas will be analysed.

Performance
Using a volume rendering technique for visualising objegmands much CPU processing time due

to the fact that each texture has to be re-calculated whevighepoint is changing. Therefore various
methods for reducing the utilisation of memory are analysed
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CHAPTER 9

Visualisation of objects

The perceptual possibilities will be analysed by definingehtest objects to be used in the project
based on various visualisation features. The mapping offéatures onto an object is founded on
earlier research, as perception psychology is beyond thpeof this project.

The general concept of visual data mining is to map data frata thbles onto a visual structure through
human interaction. The concept may be seen in figure 9.1 agdmapplied to several dimensions of
an object space.

Data Visual form
Raw data » Data tables > Visual »  Views > User
structures
Data Visual Visual
transformations mappings transformations

T T T

Figure 9.1: Visualisation of data achieved by human int¢iat Source: [Card et al., 1999]

9.1 Visual structuring

When a multi-dimensional data set is to be visualised, iigdrtant to have many visualisation param-
eters available in order to map as many of the dimensions sshpe to a visual structure in 3D space.
There are some parameters which are more perceivable tharsdiy the user, therefore it is impor-
tant to map the most significant dimensions with the strangeceivable parameters. In chapter 4 on
page 27 several visualisation techniques are purposeck ivatious papers. Furthermore, several vi-
sualisation parameters are described in chapter 2 on pagéhbdtechniques and the parameters will
be used to construct test objects for the system. The testtshjyill be constructed based on the visu-
alisation technique of developing distorted versions oasidshape, proposed by [Ebert et al., 1999].
Furthermore, also is proposed by [Ebert et al., 1999], dalizaeg are mapped to the exponents, which
controls the shapes overall flavour. This mapping will alsaubed in the construction of the test ob-
jects. For each test object is has been evaluated how mahg eidualisation parameters that can be
used.

9.2 Test objects

In 3D space objects representing data records are referradg glyphs. The definition of a glyph is
when the volume is rendered and shown in the 3D space. Thetefiof a volume is when it is still
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CHAPTER 9. VISUALISATION OF OBJECTS

represented in voxelspace. For each record it is assumethéhdata has been scaled so the values lie
between 0 and 1.

In the following three different glyphs will be proposed. éltmain idea for each proposed glyph is to

have two different shapes that are significantly differeotrf each other, and make a morphing between
them according to a feature value. As specified in the spatiiit of requirements, see chapter 7 on

page 38, the three proposed glyphs are examples of how ghgphide customised for the system.

9.2.1 Cross glyph

The basic shape for this glyph is a cube, and the morphingesisapcube with the sides grown out as
bulges. An example of this can be seen figure 9.2.

@ oo

Figure 9.2: The cross glyph with bulges defined by the valfidseadata.

The cube has been chosen as basic shape upon the assumgitithre thasic shape should be one that
is easily recognisable and simple. As the value of the dat@#ses bulges appear on each side of the
cube. These bulges have a set size according to the value dath. A data value of 1 results in bulges
that makes the glyph three times as long as the cube. By usis@lyph it is possible to represent
features using the following variables:

 Position - X, y, z coordinates, representing three feature

Colour - two dimensions, representing two features
» Transparency, representing one feature

» Shape, representing one feature

» Texture, representing one feature

» Sound, representing one feature

» Specular, representing one feature

For a detailed mathematical description of the cross glgph,appendix C on page 107.

9.2.2 Diamond glyph

The glyphs’s basic shape is a cylinder representing a date v 1, see figure 9.3 on the next page.
As for the cross glyph the basic shape is based on being easdgnisable and simple.
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9.2. TEST OBJECTS

S Ol

Figure 9.3: The diamond glyph.

As the value of the data increases the cylinder evolves aatidrahape. The diamond shape is based on
the research paper done by [Ebert et al., 1999], see figurerdpage 30, where a superquadric shape
is used. By using this glyph it is possible to represent featby the following variables:

Position - X, y, z coordinates, representing three feature

Colour - two dimensions, representing two features

Transparency, representing one feature

Rotation, representing one feature

Shape, representing one feature

Texture, representing one feature

Sound, representing one feature

Specular, representing one feature

For a detailed mathematical description of the diamondtyglgee appendix C on page 107.

9.2.3 Hourglass glyph
The basic shape of the glyph is a cylinder representing avddie of 1, see figure 9.4.

i VAN

Figure 9.4: The hourglass glyph.

As for the cross glyph the basic shape is based on being easiignised and simple. As the value of
the data increases, the cylinder evolves an hourglass sfibpdiourglass shape is an advanced type of
shape but yet easily recognisable as an object. By usingltifjgxt it is possible to represent features
by the following variables:

« Position - X, y, z coordinates, representing three feature
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» Colour - two dimensions, representing two features, caappied three places, making the total
features six.

« Transparency, representing one feature

Rotation, representing one feature

» Shape - glass-shape and sand level, representing twadsatu

Texture applied to the sand in the hourglass, representiegeature

Sound, representing one feature

» Specular, representing one feature

For a detailed mathematical description of the hourglagsiglsee appendix C on page 107.

Discussion

Based on the analysis of the visualisation of objects these dbjects have been created. All three
objects are generated on the visualisation technique @floi@wng distorted versions of a basic shape.
Furthermore, data values are mapped to the exponents, whittol the shapes overall flavour. The
choice of the object properties used to generate the testtshis based on the assumption that it is
possible to achieve a perceptually good visualisation efita set where it is possible to detect visual
tendencies.
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Volume Rendering

To visualise the objects a volume rendering technique wilised. The fundamentals of this technique
is to slice each volume into a number of planes to which a textumapped. The volume rendering
techniques being analysed are volume rendering using pigoenetry, volume rendering using 2D
texture stacks and shear warping. Additionally, shadinghoes will be analysed.

The method used in this project to represent a volume in 3Despsvolume rendering. Volume slicing

is a technique of volume rendering, which utilises simplenpl geometry. The fundamental idea is
to place simple geometry perpendicular to the viewing aimgale the space in which the volume is
represented. Onto these planes a texture is applied, wickgents how the volume would look if it

was sliced with the plane.

10.1 Volume rendering using plane geometry

The volume rendering technique allows rendering of complepes from image volumes, 3D bitmap
images. A number of semi-transparent textures sampled frarallel planes in these volumes are
generated and mapped onto a series of parallel geometrielperpendicular to the viewing angle.

For each glyph in the system, there is an image volumesplaaeistrepresented in the 3D space as a
number of planes limited within a bounding cube.

10.1.1 Generation of plane geometry

Source: [Madsen, 1997]

In order to generate the planes, the planes have to be matbaltlyarepresented. The mathematics in
this section is based upon the assumption that the centne ebtume is situated if0, 0, 0) in the local
coordinate system of the object.

The equation for the plane is:

a(z —x0) +b(y —yo) +c(z —20) +d =0 (10.2)

xo, Yo and zy are points on the plane, and are used to place the plane in&i2.sfhe normal to the

plane is given by:
a
n=1| b (10.2)
C

The normal is equivalent to the vector from the viewing angBased on these equations, a plane-
generator can be made. The centre plane of the volume isdplac@, 0,0). This simplifies the
equation for the centre plane to:
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CHAPTER 10. VOLUME RENDERING

ar +by+cz=0 (10.3)

Since the planes are all being placed along the normal yvebh®normal vector coordinates can all be
used to place the other planes. If the normal vector is sdafezhch placement of a plane, then the rest
of the planes can be generated using:

ax+by+cz—a® - - =0 (10.4)

If the normal vector to the plane is set to unit length, thdasda the centre points of the additional
planes can be calculated using:

. L ~

z-<1_1>-n (10.5)

wherel is the total number of planesjs the current plane number aids the length from the centre
to the edge of the bounding cube in the direction of the noxmator. The side-length of the bounding
cube is denoted &as L is calculated using standard Pythagoras:

L=+/(m-a)2+ (m b2+ (m-c)? (10.6)

where m is a scalar, that scales a, b and c to the length to geeafdhe bounding cube:

m = ——

¢
2-1

with

[ = maxa,b,c)

Example For this example the side length of the bounding cfibel0 and the total number of planes,
I =10. The view point is set t(2, 1, 5). With the given viewpoint the plane is given by:

2r+y+52—4—1-25=0
20 4+y+952—-30=0

[ = maz(2,1,5) = 5 and thusm = % = 1. The length from the centre to the edge of the bounding
cube in the normal vectors direction, is:

L=v22+12+52=130

The normalised vector yeild$ = (%, —1=, —%5)", and thus for plane number 2 the scalar is
2 4
V30 9
2 ( 30 ) L — | 2v30
10-1"| v 135
V30 27

Inserting the new scalar into equation 10.1 yeilds:
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4 2v/30 2 764
—CE—{—Ly—F—Z——:O
9 135 27 3645

10.1.2 Quads or Polygons

When placing geometry in 3D space using OpenGL, there aeraeprimitives that can be utilised,
such as triangles, quads and polygons, see appendix A orip8der further details on these. Since the
textures for the planes have four corners, due to the useedC#ntesian coordinate system in images,
the triangle primitive will not be considered any further.

The quad primitive consists of four points, which easesditeute mapping, as the corners of the quad
matches the corners of the textured image. The placemehé @futad inside the bounding cube, poses
a challenge if quads is used creating the planes.

The polygon primitive consists of as many points as the pnogner decides, which makes it a very
flexible primitive. However, the fact that the number of geinreating a plane can vary depending on
the planes angle, the texturing of the planes poses a cgallen

A waste of parts of the image that should be textured can natdieled for neither quads nor polygons.

10.1.3 Fitting the planes to bounding cube using quads

For this project two simple approaches has been utilised tioefiplanes to bounding cube using quads:
2D Cutting andCubic Plane Cutting. The size of the bounding cube, which denotes the limitsHer t
planes, iz(x(. Both methods are based on preliminary testing of creatiraglg| from the bounding
cube.

2D Cutting

In this approach the largest component of the normal vettisrfound and the two remaining com-
ponents denotes a 2D plane. These two directions is whereettier spans the least, and the thesis
is that the plane will likely be oriented, in such a way tha ##D plane is the Cartesian plane that is
closest to the viewpoint. When the proper 2D view port hastbeend, the four 2D corner coordinates
of the bounding cube is applied to 10.1, and the result wilfdag 3D coordinates that make a plane
perpendicular to the viewing angle.

This approach makes the best planes, when one vector conmtgersignificantly larger than the other
two. When the three components are about the same size, tli@uRiDg results in a skewed plane
because the cutting angle is far from the viewing angle, @mgte of this effect can be seen in fig-
ure 10.1 on the next page.

When several planes are generated the skewness probleméxeowore apparent, as the most forward
and backward planes would have more geometry outside ofdilweding cube, than inside, an example
of this can be seen in figure 10.2 on the following page. Alhpkin the figure are perpendicular to
the viewing angle. When the planes are texturized the paatsare outside of the bounding cube will

be invisible.

To solve the skewness problem, each plane could be checkedhith corner points that was outside
the bounding cube. If two or more adjacent points are outidespace, the planes could be scaled in
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@ ®

Figure 10.1: (a) The plane viewed from cutting angle. (b)e®ashot of how the cutting angle affects the planes
to skew.

Figure 10.2: An example of how the skewness problem wiltsiextreme, look. The green arrow is the vector
denoting the viewing angle, all planes are perpendiculah®viewing angle.
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10.1. VOLUME RENDERING USING PLANE GEOMETRY

regard to the (or those) point(s) inside the bounding cubtl, the planes size is exactly to the border
of the bounding cube.

Cubic Plane Cutting

The principle of Cubic Plane Cutting can be seen in figure .10t® bounding cube can be described
with six planes. If the plane generated from the viewingdion is checked for intersection with these
bounding planes, it will result in 6 lines. If the view is thizmited to a 2D perspective, the generation
can be simplified. The 2D perspective is set to be from the aikihe smallest component of the
normal vector. That means if the normal vector has the commisn20, 140 and 30 (see figure 10.3a)
then the 2D perspective will be from the x-axis, ie a yz-camtk system(figure 10.3b). From the
2D perspective only two lines are interesting, those thétieduthe plane that is viewed in the 2D
perspective. This means that if the 2D perspective is a prdioate system, the usable lines are those
that intersected with the two x-planes (figure 10.3c and donfFthe 2D perspective lines can be
drawn between the two intersection lines, and if they arevdrngerpendicular to the intersection lines
(figure 10.3e), the resulting plane will be perpendiculahtoviewing angle and quadratic (figure 10.3f).

Z

(d) (e) (")

Figure 10.3: The principal of Cubic Plane Cutting. (a) A nahvector (b)with x as the smallest component
(c) results in an intersection on the x-planes of the cubpad viewed from an YZ perspective, (e) where the
intersection lines are connected perpendicularly, ané@ (f)ane can be spanned from these lines.

10.1.4 Fitting the planes to bounding cube using polygons

If the planes within the volumes are placed using polygdmsn ino plane geometry will reach outside
the bounding cube. The planes will be strictly confined toutbeelspace. The plane equation, see
equation 10.4, is utilised to place the planes. The edgedomies of the bounding cube can be set in
both x, y and z tat$, where( is the side length of the bounding cube. This means that aitpéor

the polygon describing a plane can calculated by applyiegdlttoordinates to the equation for each
plane within the bounding cube. If the resulting coordinateutside the bounding cube, the coordinate

55



CHAPTER 10. VOLUME RENDERING

will not be used in creation of the polygon.

The final step is to sort the coordinates that are within thending cube in the order, they should
be drawn. This can be done by viewing all the coordinates faomwvo dimensional perspective, and
determine the angle from the centre of the plane to each twied These calculated angles can then
be sorted, and the right drawing order is thereby apparent.

10.2 Texturizing plane geometry

When considering the texturizing, one problem is how toestlrough the volume, and get the right
representation of the slice. Another problem, when comsigehe generation of textures to the planes,
is how to make sure that no important perceptual informaitidost in the space between the planes
and how to deal with this potential loss. Furthermore, threblems must be evaluated in comparison
with the amount of time each method takes.

10.2.1 Coordinate transformation

The problem of finding a proper texture for an arbitrary plariesting within the volume is to remap
3D coordinates into 2D coordinates. This may be solved bydionate transformation. The principal
of coordinate transformation is to have one coordinateesystnd map it onto another.

In this project the planes are represented by four pointdirs@ace. An example of a plane may be
seen in figure 10.4.

o

01‘07

,0,_?'

Og

Figure 10.4: A 3D plane represented by four coordinates.

The plane may be described with axes derived from the 3D pointhe planes. Furthermore, the two
axes may be described by the vectors spanned from point pgune f.0.4 where:

This is done on the assumption that the plane is symmetricgh®line from p1l to p3. Vectorl and
v2 can be seen in figure 10.5 on the next page.
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10.2. TEXTURIZING PLANE GEOMETRY

2

O3

Og

Figure 10.5: Vectow1 andv2 derived from points p1,p2 and p3.

The texture has various resolutions, dependent on the seqjokthe system for that particular plane.
The horizontal {1) resolution is equivalent to the vertical¥), and is denoted. The half unit length
of the vector is calculated in equation 10.8 and equatioB.10he half unit length is used in order to
address the center of the pixel.

(10.7)

St
I

(10.8)
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I
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2.5
v2
2.5
The 3D position of the voxels within the volume, which map th@&ndy position in the texture may be
found usingvz andvy. If the vertical pixel position on the texture is denotedahyand the horizontal

is denoted byy, then the 3D positiop of any pixel on a texture described by the four points may be
found with:

plx,y) =2 -2—-1)- v+ (2-y—1) -0y +p2 (10.9)

Example:

In this example the resolution of the texturdisx 10, see figure 10.6 on the following page, therefore
s is 10.v1 andv2 are scaled down toZ andvj as seen in the figure. To find the pixel(dt 7) the
vectorp(4,7) is calculated using2 - 4 — 1) - vz + (27 — 1) - vy + p2.

With the 3D position for the pixel, the value is the same as/thes| in the volume describing the space.

Another problem is how to make sure that the voxels betweeslibes are represented on the texture.
The representation is needed if there are voxels in the dpatveeen the slices, which holds vital
perceptual information. In that case the voxels, which ate/ben two slices, must be projected on the
texture for representation. The angle of the projectiontrbagquivalent to the viewing angle to create
the proper effect. For this the normal vector may be utilisedit describes the vector from the plane
to the users point of view. If the normal vector is scaled ti iemgth, all voxels between the point on
the plane and the point of view may be found by varying a saaldtiplied to the normalised normal
vector. If k£ denotes the scalar antlis the normalised normal vector, then the voxehay be found
with:
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Figure 10.6: Vectowz, vy and the vector to the point x=4 and y=7.

g=Fk- 7 (10.10)

This scalar may be used to find all voxels in front and behingaah plane, and may therefore be used
to project these onto the texture plane.

10.2.2 OpenGL 3D texture slicing

Source: [Shreiner et al., 2003]

OpenGL extensions allows hardware accelerated textwimgli This means that all the calculations
for slicing the textures will be maintained by the hardwaraphics accelerator. This method eases the
texture generation to merely telling the hardware pointsarh plane-geometry and their corresponding
points within the voxelspace.

This method is the obvious texture-method, when using moiglices to represent the volume.

This method is by far the fastest, most effective and easi##itile it is the advantage of the method
that the slicing is done within the graphics acceleratas #t the same time the disadvantage. Itis a
disadvantage because it is hardware accelerated. Whelicthg & hardware accelerated it means that
all of the slicing of volumes can only take place on one mashihe machine that draws the graphics
for the visualisation. This means that the volume slicinigwations can not be distributed to multiple
machines. At the same time in a system that needs to slicapteuwltolumes, the load on the one
machine will be great. At the same time the demands to the mearthe one machine will be very
great, as it needs to store all the volumes it is supposedct sl

10.2.3 Volume rendering using 2D texture stacks

Source: [Rezk-Salama et al., 2000]
The simplest form of volume visualisation utilises only 2Bture mapping which is supported by even
the simplest graphics hardware.

To render the volume, the volume is stored as a stack of slidege stacks of slices are stored for each
volume. Each stack is perpendicular to one the three mags, @ad the stack that is most perpendicular
to the viewing direction is always chosen as the displayackst
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Then each slice is rendered back to front.

This method requires only basic OpenGL functionality withextensions. The principal is illustrated
in figure 10.7 with only 9 planes, as it can be seen the howgggassible in the volume, even though the
viewing direction is far from the planes normal directionorially a volume made with this method
would be represented with more planes than in the figure, mgakie gaps between the slices almost
invisible.

Figure 10.7: The 2D textures Volume rendering method agpligh only 9 planes, but still the volume is repre-
sented.

There are a number of weaknesses with this simple approdct, fhree sets of slices needs to be
stored. Secondly, the quality of the image depends on vipairgle. Finally, there is a slight visual
pop whenever the viewing direction changes.

The advantage of this method, is that it requires no calicmstevery time the perspective changes, all
necessary calculations are done in advance.

10.2.4 Volume rendering using Shear Warping

Source: [Lacroute and Levoy, 1993]

The general concept of shear warping is a transformatian &po object space to a shear object space
for a parallel projection. This is done by translating ealites From the shear object space each
voxel slice can be projected into an image simply and effibjenThere are several types of Shear
Warp Factorisation methods. The one described in this@ewtithe Affine Factorisation method, see
appendix D on page 114 for further details, which includag filansformations: From object coor-
dinates to standard object coordinates, from standardiobperdinates to sheared object coordinates,
and finally from sheared object coordinates to image coatds) see figure 10.8 on the following page.

The factorisation of an affine viewing transformation mairicludes a 3D shear, a 2D warp, and a
conversion:

Mview = Mwarp ' MshearP

The permutation (conversion) matrik,is derived from the principal viewing axis and is used to galc
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Figure 10.8: The four different coordinate systems used@derivation of the Affine Factorisation method.
Source: [Lacroute and Levoy, 1993]

late the transformation from object coordinates to stashdaject coordinates. The principal axis is the
axis in object space which forms the smallest angle with theing direction vector. The transforma-
tion from standard object space into image space is madg &sand M,;..,. In order to calculate the
shear matrixV/.,, and the warp matrid/,,.,», the shear coefficients have to be calculated. The shear
necessary in thedirection is the negative of the slope, ; /vs, 1. (See figure 10.9), of the projection of
the direction vector onto the, k) plane. This also holds for thedirection.

Viewing

/ direction
/
/ : Vsc.i&

F ]
k I
- e
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Figure 10.9: The cross-section of the volume and the viewdingction in standard object space. In or-
der to transform the volume to sheared object space the wlumost be sheared in thedirection. Source:
[Lacroute and Levoy, 1993]

Voxel
slices

When this transformation from standard object coordin&tesheared object coordinates, the result
is a coordinate system where the origin is not located atdhdeft corner of the image and thus a
translation of the sheared coordinate system is neces3#.four cases of translation is shown in
figure 10.10 on the facing page

10.3 Shading

An important aspect of rendering shapes in 3D, is the shaditgs applies to volume rendering as
well, as the shading is one of the factors that gives objbeteffect of appearing in three dimensions.
The effect can be seen in figure 10.11 on the next page

The next sections explores ways to apply a shading to a reddelume. All methods will be used
upon the assumption that the light source that shades thenesl is emitting from the user, as if the
user in the virtual world is carrying a flashlight.
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Casel: 5 >0,5;,>0 Case2: 5> 0,5 <0
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Figure 10.10: The four cases of translation the sheared dimate system. The translation; (¢;) specifies
the displacement from the origin of the standard object doate systemi(= 0,5 = 0) to the origin of the
intermediate image coordinate system=£ 0,v = 0). k4. IS the maximum voxel slice index in the volume.
Source: [Lacroute and Levoy, 1993]

Figure 10.11: The effect shading has on the 3D effect of aaabbj
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10.3.1 Plane Depth Grading

This method applies to volume rendering methods using planeisualise the volume. The approach is
very simple, since the light that shades the volume is emgiftiom the same point as the point of view,
the planes nearest to the user must be lighter than the damiesst away within the volume. With this
in mind the concept is to gradually decrease the intensith@flanes as a programme creates them.
This method is based on preliminary tests with making a stgafitir the volume slicing.

Mathematically plane depth grading is utilising:

§= — (10.11)

Wheren is the current plane the programme is processing for theuglyph, NV is the total number
of planes that should be processed for the current glyphlewtis the shading value that should be
multiplied to each colour value on each pixel on each plame svalue is ranging between 1 and 0.
A result with testing this method can be seen in figure 10.12.

Figure 10.12: An hourglass glyph shaded with Plane Depthdirg.

The weakness of this approach is that it is not a real shatlaggd upon the curvature of the object. It
only helps the user to perceive the depth of the object. Aaratleakness is that if the number of planes
in a volume is low, the intensity difference between the ptacan reveal to the viewer that it is merely
a row of planes that is visualised, and not a solid object. dch@ntage of the method is that it is easy,
and fast.

10.3.2 Lamberts Reflection Model

Source:[Slater et al., 2001]

One way to create shading upon the surface of a rendered gphwould be by applying Lambert’s
shading model to the surface calculations of the volume. mbdel has no base in real-life shading,
as it is not synthesised. The model is a simple way to cakewdhading of surfaces. Only the most
significant affecting lights are taken into calculation atk point, because the peripheral light sources
seldom has very large effects on the result. The purposet t®give a realistic shading of the glyphs,
but a shading, that enhances the perception of the shapks gfyjphs. Lamberts shading model can
be seen in more details in Appendix E.

First the normal vector of each edge voxel is needed to atkewhe shading. This can be found by
searching the 26 connected neighbourhood of each edge viixel26 connected neighbourhood can
be seen in figure 10.13 on the next page.
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Figure 10.13: The 26 connected neighbourhood.

In the neighbourhood a direction vector is made for eachhiigring voxel that is "free" space, and
not solid space. These vectors point in the direction of tee foxels and are all set to unit length.
When all vectors has been made, they are all added togetigtha resulting vector is the normal
vector for the edge voxel, a 2D example of this may be seenumdig0.14.

ny

Figure 10.14: 2D example of how vectors to the free voxelgmnvadded together, gives a normal vector for an
edge voxel.

The resulting normal vector may be calculated with:

i
L

(10.12)

)

U =

i
o

The shading of each voxel, may be divided into 3 categoriéfsisd, specular and ambient reflection.
Diffuse reflection is the direct illumination of a surfacehish makes the surface visible.

Specular reflection controls how the surface shines onssfavith direct light.

Ambient controls the illumination of surfaces not affectadight.

Diffuse reflection

When the normal vector and the viewing angle is known, thieviehg calculation can be made to find
the diffuse value of the edge voxel:

Ij=kg-1I; - (e L) (10.13)
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Figure 10.15: The diffuse part of the lambert shading model

Where:

14 The resulting intensity value for each edge voxel.

k4. Diffuse Reflection coefficient. One for each colour channel

I;: Intensity of the incoming light.

D: The angle between the normal vector and the incoming lightor.

7i: The normal vector to the surface.

L;: The vector for the incoming light.

V': The viewing vector.

All values are normalised to values between 1 and 0. Equatial3 on the page before can be simpli-
fied, as there are certain limitations to the shading. Bextheslight is emitting from the same place as
the viewing angIeV andL; is the same. The intensity of the incoming lighttan be set to a constant
value of 1. Thek, factor is representing the colours of the voxel, that mégnrs each colour channel
represented as a normalised value between 1 and O;

Hence the diffuse reflection can be reduced to:

—

Ij.=meV (10.14)
Wherel,, in equation 10.14 is afterwards multiplied with each colduannel, ¢ denoting colour chan-

nel.

Specular reflection

To find the specular reflection
Is=ks-I;-(ne (V4 L))" (10.15)

ks: Specular Reflection Coefficient.

Figure 10.16: The specular part of the lambert shading model

I;: Intensity of the incoming light.
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S: The angle between the perfect reflection angle and théngeangle.

m: Shininess-factor. Ranging from 1 and to values abovehitiger the value, the more concentrated
the specular reflection will be.

L;: The angle for the incoming light.

H: The angle between the viewing angle and the incoming Iiggteaﬁ =V + L

R: The perfect light reflection angle.

This calculation applies to all colour channels. As with thifuse, the specular reflection equation
10.15 may be reduced, by setting the incoming light intgngito 1, while &, will be set to 1. Since
the light emits from the same place as the users point of temaddition ofi’ and Z; is irrelevant as
they are equal. Hence the specular reflection may be redaoced t

I, = (ReV)™ (10.16)

As equation 10.16 bears resemblance to 10.14 this can edttb modifying the specular reflection
to:

I,=1I7. (10.17)

Ambient Reflection

Ambient reflection is the simplest of the three, as it doesnmumirporate angle calculations. Ambient is
the light that affects all points.
The ambient reflectio,, may be calculated with:

I =ke I (10.18)

k.. Ambient Reflection coefficient
I,: Ambient Light intensity

These calculations can be omitted by settipgo a constant, like 0.3, which means that surfaces on
objects that are not affected by the light, will be 30 %.

Total reflection

The three reflection types can be summed to calculate tHerédiection:

I=1,+1;+1I, (10.19)
Which can be written as:
I=03+iieV + (TeV)™ (10.20)
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Discussion

Based on the analysis of volume rendering it is decided tbhinve slicing based on simple plane
geometry will be utilised in the system. This is done by usheyOpenGL primtive quads as it consists
of four points and thus matches the corners of the texturedyém In order to cut quads out of the
planes a 2D cutting method will be used. For navigation theme rendering technique using 2D
texture stacks is utilised, as they do not require calanatiof each volume during movement of the
view point.

Furthermore, it is decided that in order to find a proper texfor an arbitrary plane the 3D volumes
have to be transformed into 2D textures using coordinatestoamation, as this process can be dis-
tributed, whereas the OpenGL 3D texture slicing can not.

It is decided that the Plane Depth Grading method is to be. UiBkd advantage of the method is that
it does not require much processing time. Lamberts Refled#iodel needs to project and shade all
edge voxels in a volume onto the slices, to have the rightetiethe glyph in 3D space. In relation
to Plane Depth Grading the Lamberts Reflection Model requirere processing time and is therefore
not chosen.
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Performance

Using a volume rendering technique for visualising obja#sands much CPU processing time due
to the fact that each texture has to be re-calculated whewithe point is changing. Therefore various
methods for reducing the utilisation of memory are analysed

To exemplify the need for compression, assume that the diimes of a given voxelspace a286 x
256 x 256, and thus the resulting size of each voxelspace is:

256 - 256 - 256 - 32

= 64MB
1024 - 1024 - 8

For instance if there are 1000 objects, each with a uniquelspace attached, the amount of memory
consumed by voxelspaces is 62,5 GB, with 500,000 objectetudting size is 30,5 TB uncompressed.
Therefore, figure 7.2 on page 39 is expanded by a compressforetstorage and a decompression just
before the geometry and texture calculations are perforrfiled new diagram is shown in figure 11.1.

Generate
olume

Compression

Figure 11.1: The overall flow diagram of the programme expahaith compression and decompression.

In the following sections a case of 1000 objects each withxalgpace dimension @b6 x 256 x 256
will be utilised to exemplify the memory usage with the vasanethods.

11.1 General compression methods

A compression of the glyphs is necessary as long as each glyphjected to take up 64 MB, because
the storage of all the glyphs would take up more memory thaat vgHikely available. Several methods
may be used for compression such as Joint Picture ExperpGIBIEG) and Portable Network Graphics
(PNG). In appendix F on page 124 a more detailed descriptidheocompression methods can be
found.

11.1.1 JPEG compression

Source: [Y.Q.Shi and Sun, 2000]
The images is partitioned int® x 8 blocks. On each block a forward Discrete Cosine Transfdonat
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(DCT) is applied, and the resulting coefficients are scarthemligh a zig zag pattern in order to main-
tain redundancy. The blocks are then converted into chrana@ and luminance effects, which are
used in the quantisation process of the image. Based on #migation tables for the chrominance and
luminance and the DCT coefficients each block is compresgediibit-stream. The compression ratio
for JPEG is 20. The JPEG compression is a lossy compressithoeSee appendix F on page 124
for further description and testing of the JPEG compressiethod.

11.1.2 PNG compression

Source: [W3C, 1996]

On glyph-like images the PNG8 compression have a compresaim of 1:54, which brings the size

of each glyph down to 1.18 Mb. This estimate is made on theupmpion that each slice of the

voxelspace is compressed separately. If the PNG-compresgs modified to compressing in the
three dimensions instead of two, it is possible that the cesgion ratio can be improved considerably.
The PNG compression is a lossless compression method. $eadip F on page 124 for further

description and testing of the PNG compression method.

11.2 Voxelspace reduction

There is an alternative to saving all the images in a voxelsplnstead of using a standard compression
on all the images in the voxelspace, it could save a significamount of memory to reduce the image
to the minimum amount of information. This may be done by oéaly the volume of each image and
by reducing the amount of colours representing each glypthd case of the three test glyphs described
in chapter?? on page ??, the symmetry of the shapes can be utilised toadldecoxelspace.

11.2.1 Reduction of volume
If the middle slice of all the voxelspaces is made, this imegetains all the information needed to
recreate the rest of the voxelspace. The fact that the sisgrhmetrical means that the image can

be cut to only contain one of the symmetrical parts. This radhat the rest of the 255 slices can be
recreated from this basic slice. The cross glyph can beatmtavith the slice seen in figure 11.2.

Figure 11.2: The basic slice that can recreate the crosslglygxelspace

The diamond glyph can be recreated by rotating the slice isefegure 11.3.

Figure 11.3: The basic slice that can recreate the diamoryglyhoxelspace
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Figure 11.4: The basic slice that can recreate the hourgtgph voxelspace

The hourglass glyph can be recreated by rotating the slee isefigure 11.4.

The reduction of data to a basic slice, requires massivelledgions in order to be recreated. This can
be solved by using a lookup-table for the remapping, whdrhalvoxels points to which pixel in the
original image, they are a copy of.

The following example shows how much a volume may be comedegsing voxelspace reduction:
Example The resolution of the basic slice of the hourglas$28z256, whereas the original size of the
voxelspace i256x2562256. This is a reduction of size by:

256 - 256 - 256

=512 111
128 - 256 g ( )

The voxelspace, which uncompressed takes up 64 MB, may lbelukxs with:

64 - 1024
512

If a 1000 objects are needed for the system, these take up b2 kbtal, and the images are still
compressible. The cross glyphs and diamond glyphs will tadtg up half the space of the hourglass.

= 128kB (11.2)

11.2.2 Reduction of colour

The volume of the image is not the only thing that can be redlu@de use of different colours in the
voxelspace, is another area where the data size may be deolpiegtracting the information. Originally
the glyphs contain 32 bit colours, but if the number of difer colours is counted, only five different
colours are used throughout the basic hourglass image. rbse glyph and the diamond glyph only
uses two different colours. If the number of different cokis used as the bit length used to describe
them, three bits are enough to describe the five differerdurslused in the hourglass glyph. The
RGB-value of these five colours differ from glyph to glyphpéeading on the features used to describe
the glyph, therefore a look-up table for the colours is ndefde each glyph. If the colour reduction
is applied to the hourglass glyph the reduction ratio3/3 = 10.667. This means that a hourglass
glyph may be described using@8/10.667 = 12kB. With this reduction the total amount of space used
to store 1000 hourglass glyphs is approximately 12 MB. In parson with the original voxelspace,
the compression/reduction ratio using colour reductiotherbasic image is312 - 10.667 = 5461.

11.2.3 Run length

Source: [Salomon, 2000]
The basic image has large redundant areas, this fact carebeastirther reduce the space each image
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takes up. If the pixels are describedsasrt — pizel, colour, andend — pizel, instead of the traditional
one pixel, one colour structure, huge amounts of data mag\ms as there are many pixels after each
other, that have the same colour. This method is called mgtheencoding and is a powerful way of
compressing redundant data.

11.3 Scaling of planes

When several planes are generated, the skewness problemédemore apparent, as the most forward
and backward planes have more geometry outside of the bagiredibe than inside. To solve this
problem, each plane can be scaled to fit the bounding cube.

11.4 Distance based detail reduction

Another way to utilise the memory is to vary the number of pkffior each glyph in regard to the
viewing distance. The glyphs that gain the best 3D-effaet tlaose closest to the point of view, while
the glyphs far away gain less by having only a few planes ssmting them. This way the rendering
time is decreased. Additionally, the texture resolutiorya degraded, as the distance increases, due
to the fact that the representation of textures, far fromviee point, is difficult to see.

11.5 Reuse of glyph templates

In order to generate the glyphs, calculations have to bepadd for each glyph. If instead templates
are created for each glyph with certain intervals, caltaat can be minimised. The generation of
templates is based on the assumption that the human eyeabledb observe small differences in the
dimension values from the data set, which is normalised iasdetween 0.0 and 1.0. An example is
for the sand element in the hourglass. If the value of the dgioa in the data set is 0.1 for one glyph

and 0.2 for another glyph, it is difficult to see the sand dbtuapresents two different values. When

the observer can not see the difference on the sand elerhengasier to have a glyph representing a
larger interval as for instance from 0.0 to 0.2. In that walydive glyphs have to be made and saved
in memory as templates, as they may be reused.

Discussion

Based on the analysis of compression it can be concludedhted@NG compression method is the
only one of the described compression methods, which i¢elessBased on tests it can be concluded
that lossless compression is preferable for this systenglypn images the PNG8 compression ratio is
good in compared to the other compression methods, howeogngression ratio of 64 is not sufficient
if 500,000 objects are to be represented in the system. Tdgeus voxelspace reduction is a far more
efficient method of compression, due to the fact that eachnvelis reduced to one 2D image. The
method will be used in this system. Furthermore, a reduaifdhe colours on the 2D image, scaling
of the planes, and distance based detail reduction arsadtili
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Introduction

The system is designed with three main elements. These elerare the Volume Manager handling
volumes, the Glyph Manager handling glyphs, and The VoluieShandling the translation of vol-
umes to glyphs. A diagram describing the interaction betwthese elements can be seen in figure
11.5.

Graphical User Interface . _ Navigation
Rendering routine

Volume Manager > \/olume Slicer [ - Glyph Manager

Volume
Volume

Figure 11.5: A diagram, describing the main elements of ffetesn.

In the following sections a further description of the threain elements will be given.

Volumes

Volumes are the basic data structures where the volumetticate stored. The system is designed with
the ability to store all sorts of image data in these volumes.

When the system is initialised a volume, representing edjhicbto be displayed in the scene will
be generated. This means that a large number of objects ewibdd large amounts of physical data
storage. To limit the amount of physical data storage reqilieach volume type can incorporate a
custom compression algorithm, specially designed to ni@rthat type of volume.

All volumes are managed by a volume manager, that maintdiasa all volumes, with a unique ID.
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Glyphs

Glyphs are the abstractions used in the system to describedanable element. The glyph is, in the
same way as the volume, a data structure containing two ni@neats namely the textures to be
rendered, and the coordinates of the corresponding gegroatwhich to place the texture.

All glyphs in a scene is managed by a glyph manager, whichtaiamat list of glyphs, updating these
from the volume they are linked to, when the user requires it.

11.5.1 Overall structure of the system

The overall structure of the system starts with a user chgasiglyph object. The data dimensions are
mapped, by the user, to the various features of the objea.fifdt time a user runs the visualisation,
the Volume Manager generates all objects as volumes, frend#ta records. The Glyph Manager
utilises the Volume Slicer to generate navigation glyphs te high density glyphs, which are stored
in glyph objects maintained by the Glyph Manager. The RenddRoutine starts drawing the sliced

high density glyphs. From here the user can swich to navigatiode, which enables navigation for
the user. When the user has navigated to a new point of vieatendn high density view ofthe glyphs

is desirable, the user commands the system to reslice. Tygh®llanager then utilises the Volume

Slicer to generate new high density glyphs from the new pafiview. The user has the oppportunity

to re-enter the mapping GUI and remap the features or choose glyph.
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CHAPTER 12

System overview

This chapter describes the functionality of the designstksy, in terms of volume, volume slicer, glyph,
and graphical user interface.

12.1 Functionality of the system

The object types utilised in the current system are the Hasisg Diamond, and the Cross glyphs. A
further description of these can be found in chapter 9.

Input to the system is a data set clamped between 0-1 fromea gatabase. From the input data, visual
objects, of one of the three object types, are generateddingao the input from the graphical user
interface and stored as volumes. When entering the 3D spdbe Bystem, all volumes are converted
into glyphs by means of volume slicing.

Volume slicing entails generating a series of planes odhagto the viewing direction. This mean that
when navigating the 3D world, new calculations will have érbade for each different viewing point.
This procedure requires heavy CPU processing, and therefgeries of presliced glyphs are shown
when navigating. Each glyph has three stacks of slices dlmmghree global axes. When navigating,
one of these is shown, depending on which axis has the ladggtahce component to the glyph.

A detailed class diagram can be seen in appendix | on page 139.

12.2 Rendering routine

The main rendering routine is the main element, to which #léosystem part are in some way con-
nected, see figure 11.5. During the initialisation phas@lame manager and a glyph manager will be
created. After this, the GUI is started. Based on the chaitade by the user in the GUI, the volume
manager and glyph manager will be notified.

12.3 Volume manager

The volume manager is where all volumes are maintained. ifbigdes, generation and removal of
volumes. To create volumes, the volume manager is notifieithdoynain rendering routine, when the
user has prompted the GUI to start a visualisation. Notificaincludes information of the number

of where input data is located, the number of volumes to eraat the volume type is passed to the
volume manager. Figure 12.1 is a class diagram of the systéetnhandling volumes.
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VolumeManager Volume

e

Hourglass Diamond Cross

Figure 12.1: A class diagram of the system part handling nws.

12.3.1 Superclass Volume

The volume is an abstract superclass for the different tgpeslumes that may be added to the system.
Subordinate to the volume class is the different volumesga, that are used to create the volumes.
To function within the system, a volume class must be stractin a specific way, which ensures
compatibility. The three test objects, Hourglass, Crossl Biamond, described in the analysis in
chapter 9 on page 47, these are similar in structure, andftiiera general structure will be described.

Setting the data

Creates objects, from normalised data input, as volumdseisystem. Based on a list of data and an
indication of the desired resolution the glyph is createdaxelspace. The different steps are shown in
figure 12.2, where the example is the hourglass volume type.steps are: the creation of the object,
the colour reduction, the compression.

The shape of the The colours for Th | )
setData() - hourglass is | sand, glass, head - © volume IS
. compressed
calculated and foot is set

Figure 12.2: The data flow of the method to set the data.

Generation of a look-up table

Some of the volume types require a look-up table with prencatizilations, which are utilised for a fast
decompression. This allows the data to be decompressed fasteln, as the decompression requires
less calculations.

Reading the data

The volume is saved internally in the volume object, theefp general method is needed to read the
content of the volume from outside. This method receives a8@rdinate, and recalculates which
voxel the coordinate is similar to. The volume is decommdsssing a look-up table, the voxel is
found, recoloured and returned to the external functiorctvinequested the voxel. An example of this
method is shown in figure 12.3 on the following page where thadlass type is used.
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getVoxelColor()

Transformation
from 3D-

Y

coordinate to
voxelcoordinate

| decompressed

The volume is

Defines voxel
element in terms

of sand, glass,
head or foot

Returns colour

Figure 12.3: The data flow of the method to get the voxel colour

12.4 Glyph manager

When volumes have been created, the glyph manager will ea@bteate the elements to render in the
3D scene. To create glyphs, the glyphmanager is initialigrmed of how many glyphs to create, and
which volume each glyph refers to. In this way, the numberlgplas in the scene is not dependent on
the number of volumes created. This enables the systemualigs a large number of objects, from a
fixed number of template objects.

When initialisation is completed, the glyph manager willfmified when the user changes view point
in the system. This requires a reslicing of all glyphs.

To enable a correct back-to-front compositing of all glypte glyph manager will keep track of the
rendering order of all glyphs, based on the distance fronvithe point.

To ensure performance, the system will make use of a disthased degradation scheme for each
glyph. This entails reducing the resolution of each glypkdobon distance from the view point, and
thereby reducing the volume slicing time.

Figure 12.4 is a class diagram of the system part, handliyghgl

GlyphManager Glyph

IRl

Texture Plane

Figure 12.4: A class diagram of the system part handling latyp

12.5 Volume Slicing

The purpose of the volume slicing part of the system is toVedi a volume into a glyph using plane
slicing. The volumes are assigned to the slicer by the Glyphager, which also allocates where the
resulting glyphs should be stored. The main argument, titerSkeceives, needed in order to create a
sliced glyph, is a normal vector to the planes within the glyphis vector is the vector from the centre
of the glyph to the view point, and thus, because the vectotilised as normal vector to the planes,
these will be perpendicular to the viewing direction, whicesl.

There are two stages to the creation of a glyph from a volumad greation and Texture creation.
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12.5.1 Quad creation

The quad creation utilises the mathematics for generafiptaoe geometry, described in chapter 10 on
page 51, to calculate the planes from the assigned normtdrvéichese planes are cut as quads to fit
the OpenGL primitive. The cutting of the quads is done fronmDaprspective, chosen from which
normal vector component is the largest. Furthermore, therstalculates how much of each quad that
is contained in the bounding cube and makes a scaling of éiaerascording to the calculation if parts
of the slice are outside the cube. The bounding cube is wiésliwhere the voxels in the volume are
situated in 3D space.

When a quad has been created using the 2D perspective ctitttnguad is then evaluated, in regards
to how much of it is contained within the bounding cube. Dejdeg on the result of the evaluation the
quad will be scaled down in order to make the quad fit best tbtmding cube.

12.5.2 Texture creation

The texture creation stage is the CPU-intensive stage dintbe The method of creating the textures
is the coordinate transformation described in section dd.2age 56. The method uses the quad-
coordinates from the quad creation stage to create therésxturhe coordinates are used to create
vectors that is used to calculate the different 3D positiwhere to read a voxel colour for the texture.
The volume is accessed to get the voxel colour for the foung@§&ition, the volume is accessed as
though the voxel should be read at the exact 3D position lzdéml; while the conversion into the
volumes voxel coordinates and decompression of the volsrhandled internally in the volume. This
is done in order to make sure that all volumes, cross howwglasiamond, can be accessed the same
way by the rest of the system, ensuring a flexible systemctiratandle all volumes.

When the Texture creation has gone through finding the vdkatsshould be mapped to all pixels on
the textures, the volume slicer writes the calculated qoaddinates and textures into the area allocated
by the Glyph Manager.

12.6 Graphical User Interface

According to the external user interface requirementsdtiae 7 on page 41 defined in the specification
of requirements in chapter 7 on page 38, the functional rements, the GUI can be specified in four
main functionalities:

Object: User is prompted to choose between various record vistialisabjects.
Feature mapping: User is prompted to choose which data dimensions are mappsijdct features.
Number of records: User is prompted to choose the number of records to be vésahli

Mouse clicks: The system has to be able to detect mouse clicks on objedtmilie 3D window.

Before choosing which glyph that is to represent the datdtsetiata set has to be chosen from a given
database. The user then chooses which glyph that is to esprtbe data. In this system there are three
test glyphs available: Hourglass, diamond, and cross. Wneglyph has been chosen, the user has
to choose which data dimensions are to be mapped to whiclktdbgtures. For each mapping of the
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data dimensions, the configuration is shown on the interfdicdhis way the system becomes more
flexible because of the options available for the user on théiGcontrast to a glyph with predefined
features. A predefined glyph can be a problem in some cases$®it might not emphasise what the
users intentions are for the given data set. Finally, the liae to choose the number of records to be
visualised.

Based on the functional requirements a rough sketch of thé cabd be designed, see figure 12.5,
cotaining five panels of buttons reflecting the functiongluieements. These are data, features, glyphs,
preferences and run visualisation. The glyph, which has bBesen and the data dimensions mapped
to the various features, is displayed on the GUI. The ratatinoving, and zooming of the glyph is
possible.

The user should at all times be able to switch back and fortivd®n the visualisation of the glyphs
and the GUI, to view the perception of the glyph in 3D spac¢hdfuser is not pleased, it is possible to
return to the previous visualisation again.

£, U Forom Mave,
chres Bl £

L;@:]:

@

Figure 12.5: A rough sketch of the GUI for the system.

12.6.1 Buttons

The user interface consists only of buttons. These buttmngrauped in panels, and each button in a
panel can be assigned an individual function.

The buttons are grouped in Data-buttons, Feature-butdlygph-buttons, a Preferences-button and a
Run-button. All buttons are activated using mouse clicks.

Data-buttons

The data-buttons are representing the different dimessioa data set loaded for the programme. Each
dimension is given a button in the panel. The data panel magée in figure 12.5 as the leftmost group
of buttons. The content and number of buttons in the datal peuchanged for each data set loaded.
Furthermore, the colour of the buttons change when actlvate
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Feature-buttons

The Feature-buttons represent each feature that may beschépp glyph. The content and number of
the buttons changes for every different glyph that is cho®émen the user left-clicks a Feature-button,
the data dimension last chosen by the user is mapped to tph §hature that the button represents.
In the GUI this connection is marked by drawing a line from fata- to the Feature-button. To
undo the mapping to a feature, the user right-clicks theUfediutton, and the mapping is removed.
In figure 12.5 on the preceding page the Feature-buttonmareisecond column from the left, and
the data to object-feature-relations are marked with liinesn Data-buttons to the Feature-buttons.
Furthermore, the colour of the buttons change when actlvate

Glyph-buttons

The Glyph-buttons represent the different glyph types tiaatbeen added to the system. There is one
button per glyph, and the user may, at any time, switch fromgiyph to another, and the glyphs in the
visualisation will change accordingly. When the user diekGlyph-button the Feature-buttons change
to the setup in the newly chosen glyph, and the previous mgppire reset. Furthermore, the colour
of the buttons change when activated.

Preferences-button

This button allows the user to change attributes in the \isatéon. The current version of the system
only allows the user to change the number of records to baNsga within the visualisation scene, but
other features like the change of various ratios may alsatee fivithin the preferences category.

Run-button

The Run-button resets all glyphs completely, if they haventiaitialised earlier, and maps the features,
indicated by the data-feature relations set by the useheglyphs. The new scene is initialised with
the glyph type chosen by the user. Furthermore, the Runibiihs a strong colour and is larger than
the other buttons, as it is essential for the functionalftthe system.

12.6.2 3D space

Another part of the graphical user interface is the 3D spa®eghich the glyphs are visualised. In order

to get some aspect in the scene a white grid, encapsulatée By,txz, and yz -planes, has to be placed
on a black background. Furthermore, the placement of axgsaxd z, in the scene, helps the user to
keep the orientation.
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Implementation
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CHAPTER 13

Implementation

This chapter describes the differences between the desgystem and the implemented system. Fur-
thermore, the status of the implemented system is described

13.1 System Integration

The system has by the end of the project been implementedallitiasic functionalities. The system
is able to map records from a data set onto the features ohthe test glyphs. The system is able
to display all feature mapped glyphs inside a 3D scatterplotl can handle a re-mapping of the fea-
tures. Furthermore, the system is able switch into a naeigahode, which allows the user to navigate
through the system in low detail, but with a high frame rate.

13.2 Functionalities not implemented

The overall functionality of the system has been implenkntelowever, certain functionalities de-
scribed in the design have not been used in the system, deagons listed below.

13.2.1 Distance based detail reduction and scaling

If the distance based detail reduction utilised when randdrigh definition glyphs, the memory usage
for the textures is decreased, and thus the frame rate isased. This is also apparent in scaling of
planes.

The distance based detail reduction and scaling has beigmess lower priority, due to the fact, that
it is only used, when rendering high definition glyphs. Inthidefinition mode there are no specific
requirements to the animation frame rate, only when nawvigatThe advantage of these methods is
that the slicing time is increased, due to the fact that teeluéion on certain textures is decreased. The
scaling method has been implemented, but is currently desed, as the debugging of the method has
been assigned a lower priority.

13.2.2 Projection and shading

The projection of the voxels lying between the slices ont téxtures has been implemented, but
deactivated. The projection proved to be a CPU heavy operatihich would result in a long slicing
time for a scene, when processed on a single computer. Tiaibsetihat if projection is to be utilised in
the system, the calculation process, would need to belalisty.

The lack of projection means that the Lambert’s Reflectiord®aan not be implemented, as this
requires all edge voxels to be projected onto the textunegdht representation of the shading. As a
compensation for the Lambert shading, the Plane Depth Ggddis been implemented.
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13.3. CONSIDERATIONS

13.2.3 Reuse of glyph templates

The main reason of implementing the method is to reduce theoftimemory. Voxelspace reduction
has proven to reduce the memory usage for each volume eéflscin the system. Therefore the reuse
of glyph templates is assigned low priority and has not begriémented.

13.2.4 Graphical User Interface
The five panels, data, features, glyphs, preferences, andsualisation has been implemented in the
GUIL. The screenshot of the GUI is shown in figure 13.1. Howeberglyph, which should display the

data dimensions mapped to various features, is not showtthdfmore, switching between 3D space
and GUI, to view the perception of the glyph, has not beenamginted.

[ty 1

[t

[t

[aa 1

Figure 13.1: The screenshot of the GUI.

13.3 Considerations

This section describes the experiences gained througimgblerinentation of the system.

13.3.1 Detecting mouse clicks using raycasting

The GUI is visualised in 3D, and therefore, normal functiiies such as when a mouse clicks upon
a button is not automatically implemented, as the objechare in 3D space. Therefore the mouse
clicks on the buttons must be detected, by casting a ray fhrenusers view and find the ray that is cast
from the camera to the image plane, a line in 3D space is magleh&king the line for intersections
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with the geometry in the scene, it may be determined whichatlthe user clicked upon. Thereby the
mouse clicking on 3D buttons may be detected.

13.3.2 Shading during navigation

When a user navigates through the 3D space, the glyphs amnsi®2D stacks for each major axis.
A glyph is always shaded from the cutting angle, which mehaswhen the stacks change from one
major axis to another, the lighting of the glyph change rigpiiherefore the navigation slices are made
without shading.

13.3.3 Thickness of the glass

In the analysis the hourglass glyph is described to haves glastaining the sand. Through the imple-
mentation of the system, the glass has proved to be distgaatid without any perceptual information.
Therefore the hourglass has been modified to a glass thekriegro.

13.4 System Status

The system has by the end of the project been implementedalvliasic functionalities. The system is

able to map records from a data set onto the features of trat §lyghs. The system is able to display
all feature mapped glyphs inside a 3D scatterplot, and cadléa re-mapping of the features. Further-
more, the system is able switch into a navigation mode, walidws the user to navigate through the
system in low detail, but with a high frame rate. Screenshbtie system displaying 50 Hourglasses
may be seen in figure 13.2 on the next page and 13.3 on the foage



13.4. SYSTEM STATUS

Figure 13.3: A screenshot of the system utilising the hasgblyph.
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CHAPTER 13. IMPLEMENTATION

Figure 13.4: A screenshot of the system utilising the diaargyph.

Figure 13.5: A screenshot of the system utilising the crbgsig
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cHAPTER 14

Acceptance test

The different procedures for the test cases are describenith&more, a discussion of the results is
conducted.

14.1 Test of general functionality

This test involves two test cases, described below. A tesh@ can be seen in appendix H on page 132.

14.1.1 Test description

Mapping is testing a normalised data set, which consists of 50 reawiith 4 data dimensions for each
record. If the data dimensions are mapped correctly to #keifes the test is successful.

Continous remapping involves testing whether continous remapping of data dsioes to object fea-
tures is possible. The test is a success if remapping ocotnectly.

14.1.2 Discussion

The system is able to map data set records correctly ontoph glurthermore, the system is able to
remap a glyph with new features correctly, and switch betwdbfierent glyphs.

14.2 Test of performance

This test involves two test cases, described below. A tesh@ can be seen in appendix H on page 132.

14.2.1 Test description

Frame rate the frame rate is tested in both navigational mode and hifjhitlen mode, with a scene
containing 50 glyphs and a scene containing 1000 glyphs.

Reslicing the reslicing time for a scene containing 50 glyphs and fareme containing 50 glyphs is
tested.

14.2.2 Discussion

The time to slice the glyphs in a scene is proportional to timalver of glyphs in the scene.
The results show, the navigation mode has a significantlgeniframe rate than the high density mode,
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14.3. TEST OF PERCEPTION

which means that the implementation of the navigation mgda necessity for the usability of the
system.

14.3 Test of perception

This test involves the test case described below. A tesh@uran be seen inappendix H on page 132.

14.3.1 Test description

Object perception the object perception in the system is tested using selsictéses from the article
[Raja et al., 2004].

14.3.2 Discussion

The question of determining the glyph with the largest y congmt, which demonstrates, that the
ability to understand a single data point in the system, tisfaatory. The trends were quickly spotted

based on glyph colour, which confirms that colour is one ofrttust powerful and robust features in

3D visual data mining. The clustering evaluation demonatighat the shape of the hourglass glyph is
not a very conspicuous feature.
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CHAPTER 15

User interview

This is a summary of an interview with Erik Granum, conductedMay 27th 2004 , based on the
guestions in appendix G. The questions are not asked girbatl are only used as a guidelines for the
interview. The interview can be divided into four main tapic

* Usability of the system
« Clarity of the 3D space
* \Volume rendering

» Graphical user interface

Usability of the system

Displaying many features mapped to one glyph, limits thelpemof features a person is able to perceive
in a scene visualising a large data set. However, large dtdaan be explored in other ways. One way
of describing a large data set with few multi-featured glyglould be displaying glyphs representing
clusters of data. With a scheme like that, it may also be plessd exploit the fact that volumes can
have both an exterior appearance and an interior contelgtr@realed when entering the object.

Clarity of the 3D space

When mapping data dimensions to various glyph featuresntpertance of the data dimensions has to
be taken into consideration as the priority of the diffeffeatures is disproportionate. Furthermore, not
all features are easily perceived at a far distance, e.turexdue to both the distance and high density
of the glyphs. This can also result in an overlap of the glyphdditionally, high density causes low
perception of the features on the glyphs.

Volume rendering

When generating glyphs it should be considered if volumeéeeng is the right approach in contrast

to surface based rendering. For the expert user it seemghimatiamond and cross glyphs could

be generated by using surface based rendering, as they taaelvanced objects. Furthermore, the
use of the volume rendering technique enables glyphs withsymmetrical appearances and hereby
increasing the number of features.

Graphical User Interface

The Graphical User Interface (GUI) should be implementedhs user is able to map data dimensions
to different features in real-time while watching the 3D @gpaThis can be done through the existing
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3DVDM solution with a separate laptop running a window baGéd. If the GUI is to be implemented
in 3D space, it should appear as a sort of tool bar that calyfbeemoved within the space.
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CHAPTER 16

Conclusion

This chapter is the conclusion of a project made by group 8#2semester specialisation in Computer
Vision and Graphics 2004, Laboratory of Computer Vision Metlia Technology, Aalborg University.
The purpose of this project is to display advanced visuataisjin a 3D visual data mining system, and
allow navigation through this system in order to explore tindilmensional data sets in arbitrary view
directions and from arbitrary view points.

16.1 Purpose of the project

The aim of this project is to display advanced objects in a &Dal data mining system, and allow a
human observer as a visual explorer to navigate the systeondér to explore multi-dimensional data
sets in arbitrary view directions and from arbitrary viewins. In order to develop advanced objects,
the conceptual possibilities and the perceptual possisilof these objects are studied. Since the group
does not possess expert knowledge in the area of percetyohglogy, this part of the project is solely
based on available literature.

To explore the possibilities of advanced graphical objegtgolume rendering technique is employed
to render these. The implementation of this is based on tqghip Application Programming Interface
(API) OpenGL, as this has been introduced in a semesteraours

In order to facilitate user interaction in mapping data rtips to object properties, a simple Graphical
User Interface (GUI) is employed.

To ensure a reasonable performance from the system, vac@uagression methods are studied in
regards to volumetric image data. Furthermore, balangiegd and level of detail, when navigating
the 3D visual data mining system is explored.

Verification of results, is performed through an acceptaese Furthermore, a user interview with an
expert VDM user is conducted, to provide a perspective omudadility of the system.

16.2 Methods

In this project, three key elements are to be explored. Thesethe perceptual possibilities of using
advanced objects to represent multi-dimensional datdrseisual data mining. The conceptual possi-
bilities of how to generate and display advanced object®isface, and performance issues to ensure
the users ability to move freely in the 3D space.

16.2.1 Visualisation of multi-dimensional data

Three different test objects have been designed to presdtitdimensional data. The initial assump-
tion for the objects is to be able to map many data dimenswuifferent object properties in order to
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16.3. RESULTS

enable a user to detect visual tendencies. Three main piexpef the three test objects are, position in
3D space, colours, and basic shape deformation.

16.2.2 Displaying advanced objects in 3D space

Volume rendering is used in order to provide a flexible wayisplhying both advanced exteriors and
interiors of objects.

For this project the volume rendering technique used ismelslicing. This entails sampling of a
number of planes, perpendicular to the viewing directiamnfrvolumetric image data. The sample
planes are mapped to a series of corresponding, semi-tnampplanes in 3D space, providing a three
dimensional impression of the volumetric image data.

To ensure a high level of detail for all rendered objectsy tire rendered as individual volumes.

16.2.3 Performance of the system

To ensure that the user of the system is able to move freelyeir8D space, a navigation scheme is
employed. This involves an alternation, based on the vigwaimgle, of three pre-made texture stacks,
perpendicular to each of the three major axes. This minenike need for the CPU-heavy task of
slicing all volumes when navigating, thereby increasirgdhimation frame rate.

To enable the system of displaying large amounts of objec3®ispace, memory usage is considered.
Volumetric image data is compressed in order to minimise orgrasage. Instead of using a standard
compression on all the volumetric image data, a significardunt of memory can be saved by reducing
it to the minimum amount of information. This is done indivally for each object type, e.g. by taking
advantage of symmetry.

16.3 Results

The system is evaluated through both an acceptance teshamigteview with an expert 3D visual data
mining system user.

16.3.1 Acceptance test

The acceptance test is divided into three main test casewr@dunctionality, performance, and object
perception.

The general functionality of the system is consistent withtequirements defined in the specification
of requirements in chapter 7 on page 38. This means that thersys able to map a multi-dimensional
data set to properties of a set of corresponding graphigattsh Furthermore, continuous re-mapping
of data dimensions to object properties.

The performance of the system is tested for two importartbfacthe animation frame rate and the
re-slicing time. The animation frame rate is measured duniavigation mode. With 50 objects ,in the
scene, the frame rate is 145 fps. With 1000 objects in theesatbe frame rate is reduced to 7.5 fps.
From the test it follows that the system is able to handle aimmamx of 500 objects, while maintaining
the requested frame rate of 15 fps.
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CHAPTER 16. CONCLUSION

The perception of the hourglass glyph is tested to detertfiadevel of understanding it is able to
provide of an underlying multi-dimensional data set. Thergtass glyph is able to provide a relatively
fast understanding visual tendencies in the test data.

16.3.2 User interview

The user interview with Erik Granum, professor of Inforroatisystems, Aalborg University. The
following summarises the essentials of the interview.

Erik Granum points out that the displaying of many featurepped to one glyph, limits the number of
objects that can be visualised in a scene while maintairieay perception of all features. Furthermore,
he points out that an application for volume rendering maletiang objects represent clusters of data,
e.g. by utilising both the exterior and interior of the oltgec

16.3.3 Volume rendering vs. surface based rendering

When evaluating volume rendering and surface based rewglétiis concluded that the two methods
have different areas of application within 3D visual dataimg. Surface based rendering is well suited
for visualising a large number of objects with few featunshijle volume rendering is well suited for
visualising a limited number of objects with many features.

16.4 Prospect

The area of volume rendering has many aspects, of which episrtr mainly researches the area of
conceptual possibilities. The area of perceptual po#tadsilis primarily based on existing research.
This section will describe some aspects that can be furbéssarched.

An approach for improving the perceptual possibilitiesoidaok into the area of structuring the input
data set, in order to represent several data records withgéesjraphical object. A method of doing
this is clustering, enabling presentation of a large datavite few objects. With these objects the
possibilities of displaying both advanced exteriors anehaded interiors can be used.

Other approaches are to explore the use of different axgsneminal axes, and possibilities of using
non-symmetrical objects to increase the number of availégatures.

The system developed in this project is a limited self cordiprototype system. To increase the pos-
sibilities of both user interaction, e.g. a standard gregdhiser interface and stereo vision, and loading
of data, an implementation as a library into the VR++ systeay ime considered. Furthermore, using
VR++ will enable distribution of processing tasks in thetsys, thereby increasing the performance.
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APPENDIX A

Open Graphics Library - OpenGL

In this appendix, a short introduction to OpenGL is desdtiberelation to both surface based and
non-surface based purposes. Furthermore, geometrictipamin OpenGL are described.

All surface based primitives are eventually described imgeof their vertices - coordinates that define
the points themselves, the endpoints of line segmentseardimers of polygons.

OpenGL structure

Source:[Gillies, 2004]

Open Graphics Library (OpenGL) is the computer industrygdard application program interface
(API) for defining 2D and 3D graphic images. OpenGL specifiegtaof commands or immediately
executed functions. Each command directs a drawing acti@auses special effects. A list of these
commands can be created for repetitive effects. OpenGldepiendent of the windowing characteris-
tics of each operating system (Microsoft Windows and X Winslp but provides special routines for
each operating system that enable OpenGL to work in thagsystwindowing environment. OpenGL
comes with a large number of built-in capabilities requestahrough the API. These include hid-
den surface removal, alpha blending (transparency), &asig, texture mapping, pixel operations,
viewing and modelling transformations, and atmosphefieces (fog, smoke, and haze).

Application or high-level graphics library

|
|

OpenGl Uflity Library
(GLU)

OpenGl Extension OpenGl Utility Toolkit
(GLX), (WGL) (GLUT)

OpenGil Library (GL)

¥

Graphics hardware

Figure A.1: Overview of the OpenGL API. Source: [Gilliesp2D

The functionality of the OpenGL library is extended by a nembf related libraries: OpenGL Util-
ity library (GLU) contains several convenience routinesalirare implemented in terms of OpenGL
commands. These include routines for setting up viewingsftamation. The OpenGL Utility Toolkit
(GLUT), a window system independent toolkit for writing Qy&L programs, implements a simple
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windowing application programming interface for OpenGt addition it provides a portable applica-
tion programming interface, which facilitates writing aglie OpenGL program that works on windows
systems such as Microsoft Windows and X Window system enwients. Each window system has
its own library, which is OpenGL extension (GLX) for X Windosystem and (WGL) for Microsoft
Windows. OpenGL is not a general purpose graphics systestedd, OpenGL is a polygon-based
rendering system which supports a small number of geomgtingitives for creating models: Points,
lines and polygons.

Points

A point is represented by a set of floating-point numbersedadl vertex. All internal calculations are
done as if vertices are three-dimensional. Vertices spectiy the user as two-dimensional (that is,
with only x and y coordinates) are assigned a z-coordinat@legq zero by OpenGL. In figure A.2 five
vertices are shown. The GL_POINTS in OpenGL are individwéhis.

Al V2
O O
GL_POINTS

Figure A.2: Individual points called vertices. Source: [li&is, 2004]

Lines/edges

In OpenGL, line means line segment. There are easy ways tif\speconnected series of line seg-
ments, or even a closed, connected series of segments. dasak the line segment type causes suc-
cessive pairs of vertices to be interpreted as the endpoirtalividual segments. Because the inter-
pretation is done on a pairwise basis, successive segnamfiyuare disconnected. In figure A.3 three
different ways to show segments may be seen. The GL_LINEBaire of vertices interpreted as indi-
vidual line segments, the GL_STRIP is a series of conneatedsegments and GL_LOOP is the same
as GL_STRIP, with a segment added between the last and thesfitices.

Vo
V2 \ va VO V3
V4
V4 v7 V3
Vi
V6 V4

V5 \Al V2
GL_LINES GL_STRIP GL_LOOP

Figure A.3: GL_LINES, pairs of vertices interpreted as indual line segments. GL_STRIP, series of connected
line segments and GL_LOOP, the same as GL_STRIP with a segdukd between the last and the first vertices.
Source: [Gillies, 2004]
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APPENDIX A. OPEN GRAPHICS LIBRARY - OPENGL

Polygons

Polygons are the areas enclosed by single closed loopseo$d¢igments, where the line segments are
specified by the vertices at their endpoints. A polygon cadibglayed in various ways. The interior
can be filled with a solid colour, or pattern, and the line segt® can optionally be displayed. In
general, polygons can be complicated, so OpenGL has tastgcon what constitutes a primitive
polygon. Their are three ways to describe polygons, singaieyex and flat:

» Simple polygons are where lines do not intersect.

» Convex polygons are where two points lie inside the polygnd the line joining the points also
lie inside the polygon.

 Flat polygons are where polygons lie in a plane.

Since OpenGL vertices are always three-dimensional, tigpforming the boundary of a particular

polygon does not necessarily lie on the same plane in spageanhy cases it lies on a plane, if all the
Z coordinates are zero, for example, or if the polygon isamgie. If a polygon’s vertices does not lie

in the same plane, then after various rotations in spaceégesain the viewpoint, and projection onto
the display screen, the points might no longer form a simptesex polygon. For example, imagine a
four-point quadrilateral where the points are slightly oipplane. You can get a nonsimple polygon that
resembles a bow tie as shown in figur A.4, which is not guaeghte render correctly. This situation

is not all that unusual if you approximate surfaces by quaigrials made of points lying on the true
surface. You can always avoid the problem by using triangiexe any three points always lie on a
plane.

b

Figure A.4: A non-planar polygon which is transformed inta@-simple polygon. Source: [Gillies, 2004]

For many applications, non-simple polygons are neededcoawex polygons, or polygons with holes.
Since all such polygons can be formed from unions of simplavex polygons, some routines to
describe more complex objects are provided in the GLU, fstaimce a quad, defined in OpenGl as
GL_QUAD. These routines take complex descriptions andkatteem down into groups of the simpler
OpenGL polygons that can then be rendered. The reason for@yxerestrictions on valid polygon
types is that it is simpler to provide fast polygon-rendgrirardware for that restricted class of poly-
gons. In figure A.5 on the facing page some examples of valitimralid polygons GL_POLYGON
are presented.
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VALID INVALID

Figure A.5: Valid and invalid polygons. Source: [Gillie)@4]
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APPENDIX B

SGI OpenGL Volumizer

Source:[Volumizer, 2004]

In this appendix a technique called volume slicing in the S@umizer is explained. This technique is
used for presenting 3D objects and have separate advatilisgesantages, which are also mentioned.
A short introduction to other features in SGI OpenGL Voluemiare also briefly referred to.

OpenGL Volumizer is a graphics API designed for interactivigh quality, scalable visualisation of
large volumetric data sets. The API uses OpenGL for volumeeeng and hence allows standard
graphics applications to treat volumetric and surface mfadesimilar fashion.

A 3D object is any object that exists in 3D space. The triamgied other surface elements used to
represent such objects are 2D primitives. 2D primitivedicifin many cases because most objects
around us are adequately represented by their surfacect®hjith interesting interiors are abundant in
everyday life. Clouds, smoke, and anatomy are all examgleslometrically interesting objects. De-
spite their abundance and importance, volumetric objaetgither not handled at all or their treatment
is substantially different from that of surface-based nimde

OpenGL Volumizer extends the concepts of surface-baseceisital include volumetric shapes. The
result is the OpenGL Volumizer is capable of handling boties/of models equally well.

Volume slicing

To render a shape OpenGL Volumizer uses a technique calledneoslicing. Volumizer slices a
volume along a set of parallel surfaces. This slicing predesalled polygonization. The result is a set
of polygons, called faces. Textures are mapped with eadtesktpolygons.

The following are advantages of using volume slicing/30uex mapping:

» Using 3D texture mapping for volume rendering is very féists all the interpolations for each
fragment are done by the OpenGL hardware. Also, the texataeid resident in texture memory,
which reduces the data access time considerably.

« Since the volume rendering process generates a polygppabxdmation of the data, the tech-
nigue allows mixing of volumes with other polygonal data.

The orientation of the surfaces is configurable. The simgase is when the surfaces are orthogonal
to the line of sight of the viewer. The surfaces, however, lmamligned arbitrarily. The slices in these
figures are planar, but it is possible to slice the the volumemnily shape.
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Minimal tessellation

In many cases volumes are cubes, also called hexahedralmifiraum tessellation of a hexahedron
is five tetrahedra as shown in figure B.1. A tetrahedron, shiaviigure B.2, is the simplest and most
efficient primitive that can be used to represent volumefeiometry. Any shape can be tessellated into
tetrahedra. There are advantages and disadvantages ganisimal tessellations.

Figure B.1: A cube which consist of five tetrahedra.

Figure B.2: This is a structure of a tetrahedon.

» The advantage of minimal tessellation for one hexadromésréndering process, which is in-
creased by a factor of five.

e The disadvantage is the interpolation between the tadraheWhile different volumes, for in-
stance a cube, often is compact, and therefore consist efaeolours, the minimal tessellation
is not uniform. This results as mentioned in interpolati@meen the edges of the shared tetra-
hedra. A way to minimise the problem is to increase the nuroberore uniformly distributed
tetrahedra.

Bricks

A problem is some image data bases contain more voxel datactirabe stored in a machine’s tex-
ture mapping hardware. This problem can be overcome bydalirel data and break them up into
subsections, called bricks.

A brick is a subset of voxel data that can fit into a machinedur® mapping hardware. Bricks are
regular hexahedra (boxes) with non-zero width, height,depth. Displaying a volume requires paging
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the appropriate brick data into texture memory. Anticipgtivhich bricks to page can speed up the
performance of the application.

One or more adjacent bricks constitute a brick set. Voluimefppearance is defined as a collection
of one or more brick sets. Figure B.3 shows a brick set caimgigight bricks, shown as eight cubes
within the large cube.

Figure B.3: A brick set containing eight bricks, shown asheigubes within the large cube.

Typically, a shape can be described by a single brick setetftain situations, however, more than one
brick set is required. For example, on machines that do maat three-dimensional texture mapping,
three separate copies of the data set may have to be mathtaine for each major axis to minimise

sampling artifacts.

Brick size plays an important role in the overall efficien8hort data transfers may require frequent
interrupts in the data flow and can consequently affect pemdnces. On the other hand, long data
transfers optimise the overall bandwidth but are not infgtible. The choice of brick size depends upon
the hardware architecture and therefore applicationsldlsmlect values taking system parameters into
consideration.
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APPENDIX C
Mathematical representations of the
glyphs

The purpose of this appendix is to analyse how the three tghgsyphs described in chapter 9 on
page 47 can be represented mathematically. With a matreahadpresentation of the glyphs it is
possible to generate the glyphs for use in programmes.

For each glyph type a number of features may be represergetheough shape, colour, transparency.
The mathematical representation of the glyphs mainly dedtls the shape of a glyph and how it
changes in regards to a given data value.

With a arbitrary voxelspace dimension given, the equatinag be utilised to generate the voxelspaces
for each glyph needed for the volumetric renderer.

Cross glyph

For the cross glyph one feature is represented by the shage aflyph. In figure C.1 the glyph is

represented geometrically.

Figure C.1: Geometric representations of the cross glyph

The shape is a cube when the shape controlling feature \@ué/fhen the value is 1, the bulges of the
glyphs cube grow, and the glyph takes on a cross shape. Intordescribe the growing bulges of the
cross glyph, the equation for a parabola is applicable. Phees in which to describe the parabola, will
be limited to the xy-planes 1st quadrant. As the shape is stniwal, it is only necessary to create the
shape within this confined area, as it can be mirrored aftelsvdn figure C.2 on the following page a
sketch of the cross-glyph in the 1st quadrant is shown.

All equations will be denoted dynamically, with the inteddesolution for the volume specified és

The range of the quadrant is set@do g as a mirroring will give the final glyph a range fromg

to g in both the x and y direction. In figure C.2 on the next page taib parabolas are shown. The
parabolas are equal except they are confined to differerst axdéunction axis. The maximum of the
parabolas is in the heiglg’[ units, and their roots are in the widgqunits from the symmetry axis. The
two parabolas are rais%dunits in both directions, which make%aby % square in the lower left corner
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v

Figure C.2: The cross glyph as two parabolas in the 1st quatiodthe xy-plane.

if the parabolas where to be multiplied by 0. This meansnifting the equation to the parabola facing
upwards, the parabola has a maximun((]ng) and roots in(—%l, 0) and(%,o). The range of the up
facing parabola i&% <z< g. In order to find the equation for the parabola, the two romtsuged to
find the basic parabola equation:

d
:(w—g)'@“rg)
y=a— ()

y=—a>— () (C.1)

The equation has a maximum vaIue(éDQ, hence the parabola equation must be calibrated so the value
of the maximum i%. To compensate the equation is multiplieddoy

c= == (C.2)

Inserting equation C.2 into equation C.1 yeilds

y:—%?-xQ—i-g (C.3)
To obtain the correct shape of the glyph the equation is plidd by the data value. When multiplied
by 0 the shape becomes flat, and when multiplied by one theesbapchanged thus the shape will
range from a cube to a full cross glyph. In order to make thalQesturn the shape into a cut%js
added to expression C.3. This will create a cube ranging #(%W % in the centre of the space when
the parabolas are mirrored on the axes.

The final equation for the up facing parabola is:
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N (C.4)

Where controls the shape feature.

The equation for the parabola facing right in figure C.2 onfélting page is equal to equation C.4, only
x and y have switched places:

(C.5)

with the range-¢ <y < 4.

In figure C.3, equation C.4 and C.5 are utilised to create therad 2D-representation of the equation.

Figure C.3: Mirrored 2D-representation of the equations.

The 2D-representation shown in figure C.3 may be used toecteat3D glyph. The glyph is symmet-
rical in all directions. To construct the 3D glyph, a voxelsp volume with the arbitrary dimensions
d x d x dis used. In each direction, x, y and z, the 2D image is apptled,means a xy, xz and yz

image. The 3D glyph is constructed by using the binary conth#edD. For each voxel in the volume

a glyph voxel is created if the corresponding xy, xz and yzeVixa glyph pixel. If this is not the case
the voxel is set as a background voxel. The application sfrtiéthod is illustrated in figure C.4.

Figure C.4: Creating a 3D glyph from a 2D glyph
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Diamond glyph

The shape of the diamond glyph is a morphing between a cylena diamond-like shape, dependent
on the data values. Normally, a diamond is edged with sttagifaces, but in order to describe the
shape easily by a mathematical representation, the haaizoart of the shape is limited into a circular
shape. The circular diamond shape is illustrated in figuée C.

gee

Figure C.5: The circular diamond shape

The shape of the diamond glyph may be described using twdiegaa The equation of a circle and
the equation of a straight line. The circle equation costtbé horizontal shape, while the straight line
equation controls the skewness of the shape. The shapeltiogtfeature-value is denoted as The
straight line must, when is 0, intersect the point%, 0 and (0, %) and it must be horizontal ik is 1.
The straight line is illustrated in figure C.6.

N
1

(X%

Figure C.6: The straight line controlling the skewness & diamond glyph

The line may be described through the following equation:

yz—ﬂ—A%x+g (C.6)

The way to enable the line to control the skewness of the gligohy letting the x value of the line
denote the radius of the circles the glyph is constructech fra@his is illustrated in figure C.7 on the
facing page.

This requires a rewriting of equation C.6, with x replacedtwy radiusy:
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Figure C.7: The straight line controlling the radius of theachond glyphs circles

oY
1-A
The equation of a circle is:
? +y* =1’ (C.7)

Combining equation C.6 and C.7 equation C.8 is obtained:

(C.8)

Hourglass glyph

The hourglass glyph, which is illustrated in figure C.8, igmeanatically more complex than the previ-
ous two glyphs.

————

i VAN

Figure C.8: A geometric visualisation of the hourglass dlyp

While the previous two where solid inside, the hourglasplglgmploys morphing of a shell of glass
filled with sand in an amount that corresponds to anotherddtee. In addition the glyph has a head
and a foot that also have to be modelled. An illustration esthelements may be seen in figure C.9 on
the following page.
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(X%

[N=%

Figure C.9: The different elements of the hourglass glygladhand foot, sand, and glass.

The three elements will be described in the following.

Glass

The glass of the hourglass glyph is similar to the cross glgglit also utilises the parabola equation to
describe the shape in 2D space. When the 3D shape is impledniéig done similar to the diamond
glyph, by using the x value of the parabola equation as rddiuhe circle equation.

The thickness of the glass is setgil?units. The maximum radius of the cylinder is set%# to make
sure that the glass does not get outside the head and fo@ bbthglass. The parabola equation for the
glass has the rootslg’—éd and 15,_;1_ The maximum denotes how close the glass is to the centrae The
should be Ieﬂ?)i2 units of space for the centre, when the parabola is at it'simamx. The thickness of
the glass is& units, and therefore the maximum of the parabola must beosgtt 24 = =4 This

means the equation for the parabola is:

15-d 15-d

=X (y=(—75)) (+ (5

3 ) +k

15
—Nec- (V2 —d? (V) + k
r=Xc (P —d () +
c is the calibration value that normalises the equation te tlag right height in the maximuna.is the
constant that places the parabola right vertically wherxthgis is perceived as the vertical axis. The

value ofc is:
7.d
16




The value ofk is d - 15/32. The values are applied, and the equation yields:

7 7-d 15-d
T= A (g - ) 2 C (C.9)
d 15 16 32

As in the diamond glyph, the x-value denotes the radius irtittode equation:

7 7-d, 15-d
AN (—= P ——)+ —)? .
PR A T R T (C.10)
64
The range for equation C.104'51§’—éd <y< %d. The equation may be used to create a solid paraboloid
shaped cylinder, but the shape must be tubular because b tsfilled inside. Therefore a similar
paraboloid shaped cylinder with a radius%funits less must be subtracted from the first cylinder. This

will create a paraboloid shaped tube with a rad%% and a glass thickness g‘f units.

Sand

The sand utilises the same equation as the inner parabdiajibd cylinder from the glass element to
create the shape formed by equation:

7 7.d. 15-d d
Y- TR, 32)2
d- 1z

22422 = (- (

(C.11)

The difference is the range of the sand which is dependent ginem data value. When the sand
controlling data value has a value of 0 the sand is only filtedﬁ—lg—éd to —% -d and when the value

is 1, the glass is filled fromlg—;l to é—% -d. The glass is never emptied or filled all the way to the top
due to the fact that the colour of the sand may be used to shotherfeature of the data set, therefore
the sand must be visible at all times. If the sand featurenei@de asy the range of the sand shape is:

15-d d 45 45
—3y SYSgtygd-gvd

Head and foot

The head and the foot of the hourglass may be described adrtlesc The mathematical representa-
tions of the circles are the same except for the z-valuesigaypposite signs.

The vertical shape of the head may be described as:

(=~ + (= 55 = (55)
If X is isolated:
d 15-d 15-d
_ N2 () — 2 A2
v \/(32) ==+ 53 (€.12)

The y value is ranging fromk¢ < y < 4. Equation C.12 is used as radius in equation C.13:

242 = <\/<i>2 - e By (C.13)



APPENDIX D
The affine factorisation method

Source: [Lacroute and Levoy, 1993]

In this appendix the affine factorisation method, based fineafransformations including uniform and
non-uniform scales, translations and shears used in papafljections, is derived. In the derivation,
four different coordinate systems, shown in figure D.1 wdlused:

Object coordinates are the standard coordinates of the volume data. The uméndis of each axis
equals the length of one voxel. The axes are labellged, andz,.

Standard object coordinates are formed by converting the axes of the object coordinaigbat the
principal viewing axis becomes the third coordinate axise @xes are labelledj andk, which
is the principal viewing axis.

Sheared object coordinatesare formed by shearing the standard object coordinateghgtshear ma-
trix from the shear warp factorisation. The shear objectdioate system is also the coordinates
system for the intermediate image. The axes are labellecindw.

Image coordinates are the coordinates for the final image. The warp matrix ofdstear warp fac-
torisation transforms sheared object coordinates intgéwaordinates, and the original viewing
transformation matrix transforms object coordinates image coordinates. The axes are la-
belledz;, y; andz;.

w .':ntermediate z
image
xﬂ k u Xy
vY »
¥ i
Al i
voxel!
volume slices image
object coordinates standard object sheared object image
coordinates coordinates coordinates

Figure D.1: The four different coordinate systems used i dlrivation of the affine factorisation method.
Source: [Lacroute and Levoy, 1993]

In the derivation of the affine factorisation method, themitey transformation matrix is a four-by-four
matrix M., Which transforms homogeneous points from object spaceageé space:

T o
Yi Yo
= Mview
Z 20
Wy wo

114



The goal of the derivation is to factdt,;.., as follows:

Mview = MwarpQD : Mshear3D (Dl)

where M2 denotes an affine transformation matrix aht,...3p denotes a shear matrix which
transforms object space to sheared object space. Thiddraradion requires shearing the coordinates
system until the viewing direction becomes perpendicudhe slices of the volume.

The principal viewing axis

[Lacroute and Levoy, 1993] defines the principal viewingsaxs the object space axis that forms the
smallest angle with the viewing direction vector. In imagace the viewing direction vector i% =
(0,0,1). Let v, be the viewing direction vector transformed to object spétdellows that:

gi = Mview,?»a:?) ' 770 (DZ)
0 mi1 M2 M3 Vo,
0 | = | ma1 moa mag Voyy (D.3)
1 m3y Mgz M33 Vo,

wherem,; denotes the the elements of the upper-left 3x3 sub-matriX/of,,. It is possible only to
use the upper-left 3x3 sub-matrix @sandv, are vectors. The linear system of equations, D.2, can be
solved analytically fow,, ,, v, ,, andu, ., respectively, using Cramer’s rule [Kreyszig, 1999].

0 mi2 mi3
0 maa mag

1 m3y ma33 ‘ MMz — MMz

’0071, = =
| Mview,Bm?; | | Mview,Bm?;
mi1 0 mi3
mo1 0 mag
oM L mg3 | moimiz — mirimas
O7y -
’ Mview,3x3 ’ ’ Mview,3x3
mi1 mi2 0
mo1 Moz 0
_Imzr omaz 11 mygmaog — marma
Vo,z =

| Mview,Bm?; | B | Mview,Bm?; |

Since the denominator is the same for all three expressiensalution can be written as:

mi12Ma3 — MM22MM13
Up = | Ma21mi3 — m11ma3
mi1mMmao — Ma211M12

The principal viewing axis is the largest componentof
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c = max(| Vo,x | Vo,y | Vo,z )

Transformation to standard object coordinates

Shear warping is a resampling and composition of the voiasivhich are perpendicular to the princi-
pal viewing axis. In order to eliminate special cases fohexche three axes, the volume is transformed
into standard object coordinates. Is the principal vievarig thex,, axis, then the converted matrix is:

o= O O
o O o=
o o = O
— o O O

Is the principal viewing axis thg, axis, then the converted matrix is:

o O = O
o= O O
o O o=
— o O O

Is the principal viewing axis the, axis, then the converted matrix is:

1 0 00
0100
P_OOIO
0 001

The transformation from object coordinates to standardatlgoordinates is given by:

O I . .
I\
Q

The matrixf),.,, is a converted viewing transformation matrix, which tramsfs points from object
space into image space:

/ -1
= MviewP

view

The shear and warp factors

The converted viewing transformation matd,,.,, has to be factorised into a shear in thand j
directions. After the shear transformation, the viewingediion must be perpendicular to the j)

plane. In standard object space the viewing direction vesto
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/ / / /
=2 =7 / / / /
Uso = P - Uy = | mgyymyg — my Mg

/ / / /

My Moy — My My

wherem;; are elements off,.,,. The projection of the direction vector onto thek) plane has a
slope ofv,,i/vso,1; @S Shown in figure D.2

Viewing

/ direction
/

I

|

¥ 3
. SR
J Vsoi

Figure D.2: The cross-section of the volume and the viewiingction in standard object space. In order

to transform the volume to sheared object space the volunst busheared in the direction. Source:
[Lacroute and Levoy, 1993]

Voxel
slices

=

In order for the viewing direction to be perpendicular to kplanes in the direction, the shear has to

be the negative of the slope. This also holds for the shedein direction. Thus the shear coefficients
are:

) / r /

g — _ Usoi _ Moy — MyplTiyg (D.4)
v - ! ! ! ! '

Uso,k  M11Mog — Mg M9

/ / / /
v, 1 m+1Mm — Mo
sj 50,7 117723 21713 (DS)

/ / / /
Uso,k  M11Mog — Mg Mo

The shear warp factorisation of the converted viewing fansation can now be written as:

1 0 —s; O 1 0 s O
01 —s; O 0 1 s; O
00 0 1 00 0 1
mip myy  (mig — simiy — sjmiy)  miy L0 s 0
/ / /! / / /
_ | Mar Mo (mioz — simy; — sjmyy) My 0 1 s; 0 (D.7)
mhy Mmhy (Mmhs — simby — s;mby)  mh 00 1 0 '
31 M3 33 — SilMl3y — $;M3o 34
0 0 0 1 00 0 1

where the left factor is an affine warp matrix and the rightdaés a shear matrix.

Projection to the intermediate image

Applying the shear transformation, just derived, to thendéaid object coordinate system in order to
obtain the coordinate system for the intermediate imageltein a coordinate system where the origin
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is not located in the top-left corner of the intermediate gmaA translation of the sheared coordinate
system is therefore necessary. The four possible casdseftranslation is illustrated in figure D.3

Casel: 5 20,520 Case2: 5 20,5 <0
i, i i

SR J

v

-

intermediate image

;=10 ;=0
t; =0 t; = —5,bmax
Case3: 5 <0,5 >0 Cased: 5 < 0,5 <0

o i
.

A

— 8 Fmax t;
1

Figure D.3: The four cases of translation the sheared cawatik system. The translation (¢;) specifies the
displacement from the origin of the standard object coatirsystemi(= 0, j = 0) to the origin of the inter-
mediate image coordinate system (u = 0, v 0/),.,. is the maximum voxel slice index in the volume. Source:
[Lacroute and Levoy, 1993]

Furthermore, the stacking order of the voxel slices in therinediate image has to be calculated.
In standard object space the voxel slices are ordered by khedordinate. The stacking order can
be found by examining the component of the viewing directientor corresponding to the principal

viewing axis,vs, k. If v50 1 > 0 then the voxel slice in the = 0 plane is the front slice. Otherwise the

slice in thek = k., plane is the front slice.

When the translation has been chosen, the shear and waip faetiors can be rewritten as seen in D.8
and D.9:

1 0 0 tl' 1 0 S; O 1 0 S; ti
o 010 tj 01 Sj 0 o 0 1 Sj tj
Mhear =10 o 1 ¢ 00 10| |00 1 0 (D-8)
00 01 00 0 1 00 0 1
mi; myy  (mig — simiy — sjmiy)  miy L 00 —t
My = m%l még (m%?,—sim:gl—sjmim) m:M 01 0 —t (D.9)
P my Mgy (Mgg — Simy) — SjMay) My 001 0
0 0 0 1 00 0 1
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Since the warping is performed in 2D the third row and thedtbwlumn may be removed fro/,,q,,:

my myy  (miy — timyy — tymi,)
Muyarp2p = ml21 m,22 (m/24 - tim,m - tjm/22) (D.10)
0 0 1

Equation D is the matrix that transforms the 2D intermediattgge into the final 2D image:

ZT; u
Yi = MwarpQD v
1 1

119



APPENDIX E

Shading

Source: [Slater et al., 2001]
This appendix contains a description of lighting in a 3D s;eand a model of how light affects 3D
surfaces.

Light sources

In computer graphics there are a large number of light ssutgbere the most common are:

Point light source A single point in 3D space, that emits light equally in alleditions.

Spot light source A single point in space, from where light is emitted equdtiyt only in a limited
area and direction. The light may be spread in a cone fromdird pf origin.

Plane light source A surface in 3D space, with a number of light points spreadnuih@ surface,
spreading light equally in a hemisphere.

Global illumination

In computer graphics the ideal shading of surfaces is bisiti a global illumination model, to cal-
culate all lighting in a scene. Global illumination caldels influences from all light sources in all
directions at all points of a 3D scene.

To calculate global illumination the following equationuslised:

Figure E.1: The global illumination factors.

Lw,) = /QBRDF(wO,wi) - L(w;)dw; (E.1)
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where:

BRDF: Bidirectional Reflection Distribution Function

w;: Angle to view point.

w,: EXxiting angle.

Q: All angles from calculation point.

An illustration of the factors in the calculation and thelagement can be seen in figure E.1 on the
facing page.

Calculations of global illumination is a demanding progegsich raises a need for a simplified method
with less heavy calculations.

Local illumination: Lambert’s Reflection Model

A way to simplify illumination calculations is by only caltating the most significant influencing lights,
as the peripheral lights has little effect on the illumipati This is called local illumination.

The Lambert Reflection Model is based on local illuminatidihe model has no base in reality, but is
merely a simple way to obtain shading of 3D objects.

The shading of each 3D surface, may be divided into thregyodtss. Diffuse reflection, which is the
direct illumination of a surface, which makes the surfacgble and specular reflection which controls
how the surface shines on surfaces with direct light, seedfgid.2 and E.3. Ambient reflection controls
the illumination of surfaces not affected by light.

Figure E.2: Diffuse reflection is the direct illumination @surface, which makes the surface visible.

Figure E.3: Specular reflection controls how the surfaceskion surfaces with direct light.

To calculate the total light reflection in a scene the thrélecgons must be calculated for each point.

Diffuse reflection

Diffuse reflection may be calculated with the following etjoa. The factors are illustrated in fig-
ure E.4 on the next page:

I.qg=Fkq I -cosD (E.2)

where:

I, 4: The resulting intensity value for each edge voxel.

k4. Diffuse reflection coefficient. One for each colour channel
1;: Intensity of the incoming light.

121



APPENDIX E. SHADING

Figure E.4: The diffuse reflection of the Lambert Reflectiad®l.

D: The angle between the normal vector and the incoming lightor.
7i: The normal vector to the surface.

L;: The vector for the incoming light.

V: The viewing vector.

The diffuse calculations are performed for each colour nehdenoted byk,;. The calculations are
performed with normalised values, ranging between 0 and ith Kérmalised vectors;os D may be
calculated with the following equation:

!

&

(E.3)

cosD=1-

Specular reflection

Specular reflection may be calculated with the followingatn. The factors are illustrated in fig-
ure E.5:

Figure E.5: The specular reflection of the Lambert Refledtimulel.

I s =ks- Ii-(cosS)™ (E.4)

with:

ks: Specular reflection coefficient.

I;: Intensity of the incoming light.

S: The angle between the perfect reflection angle and thengeangle.

m: Shininess-factor. Ranging from 1 and to values above.hidteer the value, the more concentrated
the specular reflection will be.

L;: The angle for the incoming light.

H:The angle between the viewing angle and the incoming ligbtea
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R: The perfect light reflection angle.

These are the same calculations for each colour channels.
Thecos S may be replaced by:
cosS=VeR=neH
Where
H=V+1L,

By applying the latter replacement the calculations mayibmpliied, as all factorsi, V and L; are
known.

Ambient reflection

The ambient reflection is the simplest of the three, as it doemcorporate angle calculations. Ambient
is the light that affects all points.

The ambient reflectiod, may be calculated with:

Lo =ke 1o (E5)

where:
k.. Ambient reflection coefficient
I,: Ambient light intensity

E.0.1 Total reflection

All factors adds to the total reflection like:

I. = Ir,a + Ir,d + [r,s (E6)

If there are several light sources within the scene, thelyhaile to be calculated one at a time, and the
partial results summed at the end. Light sources has na effeihhe ambient reflection, hence this can
be omitted of the illumination calculations.

N N
L =ka+To+ Y (ka-Tij- (e Lij)+ > (ks Tij- (e (V + Lij))™) (E.7)
j=1 j=1
This can be reduced to:
N
In=ko+ 1o+ (Lij-(kq- (e Lij) + ke (e (V+ Lij)™) (E.8)
j=1

The summations ranges from 1 to N, with N denoting the numbliglat sources.
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APPENDIX F

Compression Methods

This appendix investigates how much different types of a@sgion can decrease the amount of re-
quired memory used to store the voxelspaces.

Each compression method will partially be evaluated by has¥l W reproduces the uncompressed
images seen in figure F.1 and figure F.2, respectively. Fumihiee, the compression methods will be
evaluated by their ability to save space. The theory for @aetihod will be analysed.

Evaluation Image

Figure F.1: The uncompressed photographic evaluation inag

Figure F.2: The uncompressed evaluation image of the hasgylyph.

JPEG compression

Source: [Y.Q.Shi and Sun, 2000]

JPEG is short for Joint Picture Expert Group. In JPEG congprasan image is first partitioned into 8x8
blocks. On each block a forward Discrete Cosine TransfaomgDCT) is applied, and the resulting
coefficients are scanned through a zig zag pattern. The D@&Vasiant of the Fourier transformation:

T T

1
FDCT = S, = —c¢ucy Z Z 54 COS

21+1 27+1
: (20 + )uwCOS( j+ o
i=0 j=0

F.1
16 16 1)
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The zigzag pattern can be seen in figure F.3. The reason f@attern of the zig zag is to maintain a
redundancy from step to step through the path.

Figure F.3: Zig zag scanning order of the DCT coefficients.

The blocks are then be converted into chrominance and luroén@mages, which are used in the
guantisation-process of the image. In this process theryhisathat the first pixel of the block, is
the one containing the most information, and that the reshefpixels in the block, can be derived
from the first. With a set of quantisation tables for the luamoe and chrominance plus the DCT co-
efficients it is possible to compress each block into a béash, where the most probable pixels has
the shortest bit-sequence, and thus compressing the image-Hduffman tables are used to encode the
bit-sequences.

If JPEG-compression is applied to the evaluation image thighoptimal quality parameters set, the
resulting image can be seen in figure F.4.

Evaluation Image

Figure F.4: The photographic evaluation image compressdgiJPEG.

If the resulting image is subtracted from the original unpoessed image, the errors of the compres-
sion, if any, will be visible. In figure F.5 on the next page thsult of such a subtraction can be seen.

The computations are also applied to the image of the hagglBhe compressed image and resulting
subtracted image can be seen in figure F.6 and in figure F.7edoltowing page, respectively.

As the images show, the JPEG compression has problems wib #rat have a big contrast, such as
the text in image F.1, which is a result of the quantisaticoepss trying to find a pixel-to-pixel relation
in a high contrast area.
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APPENDIX F. COMPRESSION METHODS

Figure F.5: The errors of the JPEG compression appears asendots on the background, the whiter the dots,
the greater the error

Figure F.6: The evaluation image of the hourglass comp@sséng JPEG.

Figure F.7: The errors of the JPEG compression appears asendots on the background, the whiter the dots,
the greater the error.
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Reduction of file size

The original size of the photographic evaluation image 8 BB. The JPEG compressed version has a
size of 39.2 KB.

The compression ratio for the JPEG compression on photberis&48/39.2 = 21.6.

The original size of the glyph evaluation image is 96 KB. TREG compressed version has a size of
2.53 KB.

The compression ratio for the JPEG compression on redundages is then96,/2.53 = 37.94.

Advantages/disadvantages

Advantages: Good compression ratio. When dealing with normal photdgsathe use of JPEG com-
pression is invisible in the image.

Disadvantages: The compression is not lossless. When dealing with imag#s high contrast, the
compression is very visible. No alpha channel.

PNG/MNG compression

Source: [W3C, 1996]

PNG is short for Portable Network Graphics. The format hashheveloped to provide a format with
good compression and lossless reproduction. Furthernatplba compression is implemented in the
codec.

PNG compression specifies deflate/inflate compression. tBefimpression is an LZ77 derivative used
in zip, gzip, pkzip and related programs. Deflate-compiesisga streams within PNG are stored in the
"zlib" format, which has the structure;

Compression method/flags codel byte

Additional flags/check bits: 1 byte
Compressed data blocks: n bytes
Check value: 4 bytes

The compressed data within the zlib data stream is storedsasies of blocks, each of which can
represent raw data, LZ77-compressed data encoded with Hixéchan codes, or LZ77-compressed
data encoded with custom Huffman codes. A marker bit in tred Bitock identifies it as the last block,
allowing the decoder to recognise the end of the compressedstream.

The check value stored at the end of the zlib data streamdslaestd on the uncompressed data rep-
resented by the data stream. The zlib check value is usefinlyrta cross-check that the deflate and
inflate algorithms are implemented correctly.

In a PNG file, the concatenation of the contents of all the khumakes up a zlib data stream as specified
above. This data stream decompresses to filtered image data.

There is no required correlation between the structureefrttage data (i.e., scanline boundaries) and
deflate block boundaries or chunk boundaries. The compleige data is represented by a single zlib
data stream that is stored in some number of chunks.
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An additional option when using PNG, is to reduce the paletteolours, to describe the image using
only 256 (8 bits) different colours. This will result in an age that is flawed in comparison to the
original image. However images that already utilises feYows may gain a powerful compression
this way.

MNG (Multiple-image Network Graphics) is a variety of PN@at allows a stream of different images
to be compressed in a single MNG-file, [Roelofs, 2002]. Thessh of images could be a volumespace.

24 bits PNG compression is applied to the evaluation imaggktlze result may be seen in figure F.8.

Evaluation Image

Figure F.8: The PNG compression using 24 bits. Yielding alkss reproduction.

There are no visible compression artifacts in the resuFiNgs-compressed image. Due to the fact that
PNG is lossless, there is no reason to check for compressiors eising a subtracted image.

8 bits PNG compression is applied to the evaluation image ftae result may be seen in figure F.9.

Evaluation Image

Figure F.9: The PNG compression using 8 bits. Yielding ayidag good reproduction.

The original image is not the type of image, that 8 bits PNG @INis made for. This means that
there will occur errors in the resulting compressed imagesedJon the right type of images, such as
glyph-images, with a limited use of different colours, thifl reproduce the image lossless, and highly
compressed. The subtracted image in figure F.10 on the ngetgieows the errors using PNG8 on a
24 bits image. As can be seen, the reproduced PNG8 imageyistase to the original image.

The computations are also applied to the image of the hagglBhe compressed image and resulting
subtracted image can be seen in figure F.11 on the facing payendigure F.12 on the next page,
respectively.

It can be seen on figure F.12 on the facing page that no errotg @dhen compressing the hourglass
glyph.
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Figure F.10: PNGS8 subtracted image.

Figure F.11: The evaluation image of the hourglass comgessing PNG.

Figure F.12: The errors of the PNG compression appears asendts on the background, the whiter the dots,
the greater the error
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Reduction of file size

The original size of the photographic evaluation image 8 BB. The 24 bit PNG compressed version
has a size of 352 KB.

The compression ratio for the PNG compression is tl8df7352 = 2.4.

The original size of the Hourglass evaluation image is 96 Kie 24 bit PNG compressed version has
a size of 3.1 KB.

The compression ratio for the PNG compression is t#éii3.1 = 30.96.

The 8 bit PNG compressed version of the photographic evaluahage has a size of 171 KB.
The compression ratio for the PNG compression is tlkdR/171 = 5.

The 8 bit PNG compressed version of the hourglass glyph hiae @51.79 KB.

The compression ratio for the PNG compression is t9éi1.79 = 53.63.

Advantages/disadvantages

Advantages: The compression is lossless. Alpha channel. Good compressiio, when dealing with
images containing large redundancy.

Disadvantages: Bad compression ratio, when dealing with normal photogsaph
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ApPENDIX (5

User Interview

In this appendix the guideline questions for the expert urgerview are described.

To study the perceptual properties and performance of ttee thdvanced objects which have been
constructed, a user expert has been selected to commergsmdbncepts.

Questions concerning the interview are:

Do the three glyphs look acceptable in their form? One examp
is how the perception is for an arbitrary number of slicestlie
glyph to seem real. Another example is, if the features méjppe
the glyph are recognisable.

* Is it possible to observe the differences in the featuresrevh
the data set is normalised from 0 to 1? Or should the intergah 0
to 1 be divided into subintervals, so that one feature remtss
more than one data dimension?

« Is the animation frame rate and the glyphs appearance tatdepwhen
navigating in the 3D space?

< Can the three glyphs be expanded in any way, so the
representation of the data set is more adequate and areothereadvanced
glyphs which can be useful?

 Are there areas of data mining where using advanced glygadviantagous?

» How detailed should the information for each glyph be? 3hthe
user be able to select a certain glyph and have the informatio
concerning that glyph, in terms of which data dimensionsnaapped
to which features?
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APPENDIX H

Test

This appendix contains the different tests performed osylstem. The tests are: General functionality
Test, Performance Test and Immersion Test.

H.1 General functionality Test

H.1.1 Purpose

To test the basic functionalities of the system.

H.1.2 Setup

Computer: Abyss computer at CVMT.

CPU: 2xP4 Xeon 2.4 GHz

Memory: 2 GB

Graphics Card: GeForce 4 dual, driver: 1.0-5336
OS: Mandrake Linux 9.2, kernel 2.6.3-7

Programme: Volumetrics build 0.1

Window resolution:640 x 480

Volume resolution:128 x 128 x 128

Planes per glyph: 16

Plane texture Resolutiori28 x 128

Data set: 2sphere, an artificial data set with samples pliadeeb sphere shaped clusters.

Test 1 is testing a normalised data set, which consists of 50 receith 4 data dimensions for each
record. If the data dimensions are mapped correctly to #keifes the test is successful.

Test 2 involves testing whether continuous remapping of data dsioss to object features is possible.
The test is a success if remapping occurs correctly.

H.1.3 Results

The hourglass glyph is utilized for the test. The initial mpigygy of coordinates:
The mapping is done correctly.

The GUI is called, and the mapping is reconfigured to:
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H.1. GENERAL FUNCTIONALITY TEST

Dimension | Feature

X X

Y Y

VA VA

Cluster (W) | Shape

none Pose

Z Sandheight

X Sand colour 1: Greern
Y Sand colour 2: Red
X Head colour: Cyna
Y Foot colour: Magentg

Table H.1: The mappings used with the hourglass.

Dimension | Feature

Y X

Z Y

X Z

Z Shape

none Pose

Cluster (W) | Sandheight

Z Sand colour 1: Greern
Z Sand colour 2: Red
Y Head colour: Cyna
X Foot colour: Magentd

Table H.2: The new mappings used with the hourglass.

The Initial mapping of coordinates:
And the system displays the new configuration correctly.

Similar tests were performed with cross and diamond glypd,yaelded the same result. The system
is also able to switch between different glyphs from one nrapfo the other.

H.1.4 Discussion

The system is able to map data set records correctly ontopdnglyurthermore, the system is able to
remap a glyph with new features correctly, and switch betwdfferent glyphs.
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H.2 Performance Test

H.2.1 Purpose

To evaluate the performance of the developed system, thensysill be measured for frame rate, and
time to slicing volumes.

H.2.2 Setup

Computer: Abyss computer at CVMT.

CPU: 2xP4 Xeon 2.4 GHz

Memory: 2 GB

Graphics Card: GeForce 4 dual, driver: 1.0-5336
OS: Mandrake Linux 9.2, kernel 2.6.3-7

Programme: Volumetrics build 0.1

Window resolution:640 x 480

Volume resolution128 x 128 x 128

Planes per glyph: 16

Plane texture Resolutiori28 x 128

Data set: 2sphere, an artificial data set with samples pliacseb sphere shaped clusters.

H.2.3 Results

The test is performed using two setups: a scene with 50 glygritsa scene with 1000 glyphs. With 50

glyphs the frame rate is measured for every 100 animationdrawith 1000 glyphs the frame rate is

measured for every 10 frame. For both setups the time taeesli glyphs is measured. All scenes has
been tested in both navigation and High Definition (HD) mode.

50 Glyph scene

The scene is tested with two modes, HD mode and navigatioremod

HD mode frame rate
Cross Glyph: 9.06 fps
Diamond Glyph: 9.1 fps
Hourglass Glyph: 9.05 fps

Navigation mode frame rate
Cross Glyph: 143.74 fps
Diamond Glyph: 144.76 fps
Hourglass Glyph: 145.99 fps

Reslicing of 50 glyphs: 3.9 seconds.
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H.2. PERFORMANCE TEST

250 Glyph scene

The scene is tested with two modes, HD mode and navigatioremod
HD mode frame rate

Cross Glyph: 1.78 fps

Diamond Glyph: 1.82 fps

Hourglass Glyph: 1.8 fps

Navigation mode frame rate
Cross Glyph: 30.14 fps
Diamond Glyph: 30.92 fps
Hourglass Glyph: 30.33 fps

Reslicing of 250 glyphs: 19.55 seconds.

500 Glyph scene

The scene is tested with two modes, HD mode and navigatioremod

HD mode frame rate
Cross Glyph: 0.91 fps
Diamond Glyph: 0.9 fps
Hourglass Glyph: 0.89 fps

Navigation mode frame rate
Cross Glyph: 15.64 fps
Diamond Glyph: 15.25 fps
Hourglass Glyph: 15.13 fps

Reslicing of 500 glyphs: 39.3 seconds.

1000 glyph scene

As seen in the previous tests, there is no significant difiezdn the performance of each glyph type,
and the test with 1000 glyphs has been tested with only thegtams glyph in both modes.

HD mode frame rate
Hourglass Glyph: 0.405 fps

Navigation mode frame rate
Hourglass Glyph: 7.5 fps

Reslicing of 1000 glyphs: 78.44 seconds.
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Calculations

Time to slice each glyph in 50 glyph scengz = 0.078
Time to slice each glyph in 250 glyph sceng:>® = 0.078

Time to slice each glyph in 500 glyph sce i =0.078
Time to slice each glyph in 1000 glyph sce 3‘5‘ = 0.078

The relation between the frame rate and the number of glyysha seen in figure H.1

Performance
160
140 "\
120
100 \ —e— High definition
0 \ mode
"'Q'- 8 \ —m— Navigati
gation
60 \ mode
40 ¥\
20
0 e ‘:\2
50 250 500 1000
Number of glyphs

Figure H.1: The relation between the frame rate and the nurobglyphs.

H.2.4 Discussion

The time to slice the glyphs in a scene is proportional to timlver of glyphs in the scene.

The relation between the frame rate and the number of glyjspagied in a scene is opposite propor-
tional, when the number of glyphs are doubled, the frameisdialved.

As the results show, the navigation mode has a significaiglyel frame rate than the high definition
mode, which means that the implementation of the navigatiode is a necessity for the usability of
the system.

H.3 Object perception

H.3.1 Purpose

The purpose of this test is to evaluate the degree of pecceptith the use of one glyph type, the
hourglass glyph.

H.3.2 Setup

Setup is on the hardware system described in the performastcel he display device is a 3 by 4 meter
back projection screen.
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H.3. OBJECT PERCEPTION

Dimension | Feature

X X

Y Y

VA VA

Cluster (W) | Shape

none Pose

Z Sandheight

X Sand colour 1: Greern
Y Sand colour 2: Red
X Head colour: Cyna
Y Foot colour: Magentg

Table H.3: The mappings used with the hourglass.

Two users with no previous knowledge of the used data setrergea to participate in the test. The
data set used can be found on the accompanying CD-rom eenifiphere.csv. The data set contains
100,000 records, distributed in 2 clusters.

The test is performed with 250 glyphs in the scene.
[Raja et al., 2004] define 6 different evaluations, of whiah lvave chosen to use the five following.

1. One Axis Distance

One Axis Distance asked the subject to find the point with igeédst Y value. This task tested their
ability to judge distances along one axis in the scatterpldd felt this was an important basic task in
that it is a key component in gaining understanding of a siigita point.

2. Two Axis Distance

Two Axis Distance required the subject to locate the poirthwlie both the lowest X and lowest Y
value. We were concerned about the subjects ability to btiemselves so that they could compare
distances along two axes at once. This proved to be one of ¢the difficult tasks.

3. Trend Determination

Trend Determination required the subject to get a generadesef the layout of the data in order to
spot trends. Subjects were asked to report the trend in ¢hisat: as A increases/decreases, B in-
creases/decreases.

4. Clusters
The Cluster finding task asked subjects to locate clustedataf points greater than 20 points.

5. Single Point Search

The Single Point Search task had subjects locate a diffgresliored point in a densely packed group
of points. The point was not visible from the subject s stgrfposition and required them to navigate
to find it. This task would be important in a real-world apption where a data point is highlighted in
another view and must then be located in the VE view (e.g. shiimg-and-linking task).
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Mappings
H.3.3 Results

250 glyphs
Question 1
The two users quickly pointed out the glyph.

Question 2
The trend of different colours based on the XY coordinate guaskly picked up.

Question 3
Again, colours based on the XY coordinate were quickly picke, and the clustering in two groups
was seen. After a relatively long time, the it was discovetedt the shape represented the cluster.

H.3.4 Discussion

Determining the glyph with the largest Y component, whicmdastrates, that the ability to understand
one data point is good. The trends were quickly spotted baseglyph colour, which confirms that
colour is one of the most powerful and robust features in 3dafi data mining. The last question
demonstrated, that the shape of the hourglass glyph is retyacenspicuous feature.
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Class diagram
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