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ABSTRACT:

The purpose of this project is to explore the
possibilities of displaying advanced visual ob-
jects in a 3D visual data mining system in or-
der to explore multi-dimensional data sets in
arbitrary view directions and from arbitrary
view points.
For visualisation of three different test objects,
also called glyphs, volume rendering is em-
ployed. The technique used is volume slic-
ing, which samples a series of textures from
a volume, perpendicular to the viewing direc-
tion, mapping these to a corresponding series
of plane surfaces. A number of performance
related subjects are also explored. To verify
results, an interview with an expert 3D visual
data mining user is conducted.
A prototype volume rendering enabled 3D vi-
sual data mining system has been developed.
With this system, it is possible to visualise
multi-dimensional data sets by using advanced
visual objects. For each glyph, different map-
pings of data dimensions to features are possi-
ble.
The report concludes that volume rendering
used in visual data mining is well suited for
visualising a limited number of objects with
many features, while surface based rendering
is well suited for visualising a large number of
objects with few features. Furthermore, it is
concluded that further research in the field of
perceptual possibilities could be conducted.
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CHAPTER 1
Introduction

This report is concerned with developing a tool for aiding the analysis of large multi-dimensional data
sets. The aim of the report is the area of analysis called Visual Data Mining (VDM), which is the
concept of visualising data sets so that features are easilyinterpreted.

Data Mining

With the development in computer processing and data storage in the last few decades, storing large
and complex data sets in databases has become very common. These data sets may describe anything,
ranging from sales statistics to registration of results from a scientific experiment. Common for all data
sets are that they typically contain a vast number of records, with each record having a large amount of
information.

The concept of data mining is to make use of these large, complex, information-rich data sets. This
involves various ways of analysing these data sets to discover inter-dataset relations or patterns or
anomalies.

The following two sections will briefly describe some of the developments in data mining.

Classical Data Mining

Classical data mining techniques are in some sense an extension of statistics with a few extra additions.
Some techniques used are, artificial neural networks, nearest neighbour method and decision trees.

Artificial neural networks Non-linear predictive models, which learn through training and resemble
biological neural networks in structure. [Haykin, 1994]

Nearest neighbour methodA technique which classifies each record in a data set based ona combi-
nation of the classes of the k record(s) most similar to it, ina historical data set. Sometimes called
the k-nearest neighbour technique. [Duda et al., 2000]

Decision treesTree-shaped structures which represent sets of decisions.These decisions generate rules
for the classification of a data set. [Jackson, 1990]

Visual Data Mining

Source: [Cox et al., 1997]
The idea of Visual Data Mining (VDM) is to improve the abilityto make use of large and complex
data sets, building on the fact that people are at the centre of data mining enterprise. Human pattern
recognition skills are remarkable, and by far exceed the capability of any existing technology to detect
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CHAPTER 1. INTRODUCTION

interesting patterns and relevant anomalies. By properly taking advantage of the human ability to deal
with visual presentations, this technique aid the understanding of large amounts of data.

Only within the last decade, with the development of VirtualReality (VR), has it been possible to fully
exploit the possibilities of VDM. This involves enabling the users to immerse in a real-time visual
presentation of data sets.

The 3DVDM system (3 Dimensional Visual Data Mining system),developed at Aalborg University by
Henrik Nagel, is a system which enables perceptual representation of statistical data. The reference is
a visual world where statistical observations are represented in a 3D scatter plot. Each data point in the
plot is shown as a visual object, such that statistical variables may also control various visual object
properties such as object shape, orientation, colour, surface texture, etc. The purpose is to present data
from within, and to allow the human observer as a visual explorer to navigate the visual world, in order
to inspect data in arbitrary view directions and from arbitrary viewpoints. [Nagel et al., 2003]

Current technology is also applicable in creating advancedreal-time 3D soundscapes which may prove
useful. The field of hearing of the human ear is larger than thefield of view of the eyes, and thus is
able to inform on events happening in areas that cannot be seen. The 3DVDM system provides tools
for using 3D sound to perform general and detailed investigation of data visualised in a 3D scatter plot.
With this, it is possible to place sampled sounds or synthesised sounds at any point in the virtual world.
Thus it is possible to attach sounds representing statistical values to selected objects, or add sound
representation to groups of objects, such as density clusters or measurements of density in solid angles
around the users current position.

Volume rendering

The current implementation of 3DVDM displays very simple, surface based, visual objects such as
tetrahedra shapes, as representations of records in data sets. The goal of this project is to further develop
the rendering technique, as to enable the system to display advanced visual objects. Advanced visual
objects have the ability of displaying multiple features both exterior and interior in a volume. These
features can be visualised in a more complex manner, than those of simple visual objects in terms of
shape and texture etc.. To visualise advanced objects, a volume rendering technique is well suited. The
technique allows rendering of complex shapes from image volumes (a 3D bitmap image).

Defining the project

The aim of this project is to display advanced objects in a 3D visual data mining system, and allow a
human observer as a visual explorer to navigate the system, in order to explore multi-dimensional data
sets in arbitrary view directions and from arbitrary view points. In order to develop advanced objects,
the conceptual possibilities and the perceptual possibilities of these objects have to be studied. Since the
group does not possess expert knowledge in the area of perception psychology, this part of the project
will be solely based on available literature.

To explore the possibilities of advanced graphical objects, a volume rendering technique is employed
to render these. The implementation of this will be based on the graphic Application Programming
Interface (API) OpenGL, as this has been introduced in a semester course.

To ensure a reasonable performance from the system, variouscompression methods will be studied in
regards to volumetric image data. Furthermore, balancing speed and level of detail, when navigating
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the 3D visual data mining system will be explored.

To verify the results, user tests involving one or more expert VDM users, will have to be conducted.
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CHAPTER 2
Visual Data Mining

This chapter describes the general concept of visual data mining. Furthermore, visualisation of data
sets in 3D space is described in terms of object properties.

2.1 General concept of visual data mining

Source: [Card et al., 1999]
Data containing various information may be hard to interpret when looking at it in a database. Therefore
using another way to visualise data is desirable, so that multiple features in the data can be easily
interpreted. This can be done by using Visual Data Mining (VDM). The purpose of VDM is to show,
in an easily conceivable way, multiple features, derived from a data set, i.e. to map data to a visible
structure.

The typical way to achieve visualisation of data is by following the steps outlined by [Card et al., 1999]
in figure 2.1.

Raw data Views
Visual

structures
Data tables User

Data
transformations

Visual
mappings

Visual
transformations

Data Visual form

Figure 2.1: Visualisation of data achieved by human interaction. Source: [Card et al., 1999].

A set of data is recorded from any source the user wants to analyse. The data is stored as raw data with
no apparent order. The raw data can have many forms such as spreadsheets and text.

In order for this data to be visualised, it has to be transformed into a relation or sets of relations which
have been structured. This way the data is easier to map into avisual form. The new structure is stored
in data tables.

The data transformation is achieved through human interaction, as all data recordings are individual
and cannot be automatically structured into data tables. The data is structured according to the users
interaction.

In a data table the data may be stored as three different typesof variables:

Nominal An unordered set

Ordinal An ordered set (tuple)

14



2.1. GENERAL CONCEPT OF VISUAL DATA MINING

Quantitative A numeric range.

Transformation of raw data into structured data tables typically involves loss or gain of data/information.
Raw data may contain errors that must be corrected before thedata can be visualised. A data transfor-
mation may also contain derived values or structures, as thetransformation can incorporate statistical
calculations, which again can add information not previously perceivable.

There are multiple ways to map data into a visual representation, such as histograms, curves and plotting
of samples. It is important to choose the visual representation that fits best with the data it has to express.

After the data has been formatted into data tables, it has to be mapped to visual structures, which is a
spatial substrate that encodes information through marks and graphics. This mapping must preserve the
data, and the mapping should be expressive and effective.

The most fundamental aspect of a visual structure is its use of space. Spatial position is the best form of
visual coding, that is why the first decision regarding visualisation usually is which variables that gets
spatial positions at the expense of others. Spatial position is at the same time the most dominant form
of visualisation.

The visual structures are described through axes and their properties, there are three types of axes:

Nominal axis A region is divided into subregions

Ordinal axis An axis with ordered subregions

Quantitative axis A metric axis

All the available information in the raw data is not always visualised. Information can be derived from
the raw data, and there are several techniques to increase the amount of information, that can be encoded
along with spatial position:

Composition The orthogonal placement of axes.

Alignment The repetition of an axis at a different position in space.

Folding The continuation of an axis in an orthogonal dimension.

Recursion A repeated subdivision of space.

Overloading Reuse of the same space for the same data table.

Marks are the visual things that occur in space, and they normally represent the data that the user
requires visualised. There are four elementary types of marks:

Points Zero dimensional point

Lines One dimensional

Areas Two dimensional

Volumes Three dimensional
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CHAPTER 2. VISUAL DATA MINING

Points and lines allows graphs and trees to be visualised, and can signify a relation between objects.

There are six standard retinal variables that can be used to visualise data. These can be separated into
spatial and object properties:

Spatial Position, size and orientation

Object Gray scale/colour, texture and shape

The separation between spatial and object properties, is due to the fact that these properties are believed
to be processed differently by the human brain. These properties are a good basic set for visualisation
purposes, but there are other possibilities as well. Other properties include:

Crispness Inverse of blend-distance.

Resolution Grainyness of the displayed object

Transparency How visible the object is

Arrangement If an object is several dots, it is their configuration

Hue/Saturation Colour coding.

Temporal Temporal change in mark position.

Sound Sound may inform on events happening in areas that cannot be seen.

When the visual structure is composed, the user has to decidehow to display the visual structure. The
view transformation is done through a visualisation engine, that can be in 2D or 3D, and have a distinct
way of showing the encoded properties.

2.2 Visual Data Mining in 3D Space

Visual data mining in 3D space is one way of visualising multi-dimensional data sets by letting an
object in the space representing a data record. Each object in the 3D space may be described using
various feature variables, which represent various dimensions of the record.

2.2.1 Object variables and relations

Source: [Card et al., 1999]
In order to detect visual tendencies in data sets in the 3D space the analyst has to be able to navigate
through this space. Also the data has to be represented as objects in the 3D space, where each object
corresponds to each data record. These objects have variousproperties (variables) such as: Spatial
position, shape, size, pose, surface properties, etc, which are visual variables.

Spatial position

The three positional variables,x, y, andz, form the location of the objects in the coordinate system of
the 3D space. They are continuous variables in the visual space.
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2.2. VISUAL DATA MINING IN 3D SPACE

Shape

The shape of the objects may make it easier for the analyst to detect visual tendencies in the 3D space,
however detailed geometrical visualisations have to be approximated by planar triangles and thus com-
plex shapes are expensive for the visualisation system. An example of shape is seen on figure 2.2.

Figure 2.2: An example of a shape morphing between two basic shapes.

Scale
The scale of an object in the 3D space is described as the volume of the object. Scale is a variable that
can be used to accentuate visual tendencies, however the scale of an object is often used to describe the
distance from the viewer to the object. An example of scale isseen on figure 2.3.

Figure 2.3: An example of shape scaled between 0 and 1.

Pose
The pose of an object in the 3D space can be described in terms of panning, tilting and rotating. A
human, when not informed otherwise, will assume that an object is upright. Pose is normally used on
objects to allow orientation to be perceptually noticed. Thus pose can only be applied to objects with
familiar shapes and the shapes are not allowed to be symmetrical since changes in pose of a symmetrical
object cannot be observed. An example of pose is seen in figure2.4.

Figure 2.4: An example of three different poses.

Surface properties

Surface properties may be described as roughness, general reflectance, and differentiated reflectance
patterns. Roughness is a very expensive property in terms ofvisualisation unless approximated by a
texture. Studies show that humans attend to the top right of small objects thus the projected features
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CHAPTER 2. VISUAL DATA MINING

should mainly be placed on the top right of the objects. The surface properties colour, texture, and
transparency will be described in the following.

Colour
Colour may be described in various ways such as hue, saturation, and brightness; or red, green and
blue. Studies show that the analyst detect visual tendencies faster when colour has been applied to the
objects, however the use of more than six colours can seem confusing. Applying a black rim on a white
background or vice versa also enhance detection of visual tendencies. Generally colour should not be
used as a continuous variable due to limits in the human perceptual system in distinguishing accurately
between hue, saturation and brightness. An example of colour is seen on figure 2.5.

Figure 2.5: An example of three different colours.

Texture
Texture may be described in terms of granularity, orientation, and pattern. The use of texture should be
limited since it is limited to perception at a very close range and with very few objects. An example of
texture is seen on figure 2.6.

Figure 2.6: An example of morphing between two basic textures.

Transparency
Transparency may describe a feature through its degree of visibility. An example of transparency is
seen on figure 2.7.

Figure 2.7: An example of three levels of transparency.

Specular
Specular may describe a feature through its degree of reflecting light. An example of specular is seen
in figure 2.8 on the next page.

Spatial relations

Spatial relations between the objects and the analyst determines the spatial distribution. Two concepts
may be used to describe spatial relations: View point dependency, and view point distance.

18



2.2. VISUAL DATA MINING IN 3D SPACE

Figure 2.8: An example of three levels of specular.

View point dependency
To detect visual tendencies, the view point and the view direction of the analyst relative to the objects, is
of great importance. The spatial distribution will change depending on the view point. Object properties
such as shape and pose are also view point dependent.

View point distance
The view point distance is the distance from the analyst to the objects observed. This distance may vary
as the analyst navigates in the 3D space. Properties of the objects change as the distance vary. Large
distances result in the objects getting smaller and thus details on the objects are reduced and eventually
they disappear. According to [Granum and Musaeus, ] the distances may be defined as:

Close rangeStereoscopic vision is dominating, and details of objects may be distinguished. This ex-
tends up to about 5 m.

Intermediate range"Larger" object properties may be noticed. This range is between 5 and 20 m.

Far rangeOnly very prominent object properties can be perceived and may eventually vanish.

In order to distinguish between the three distances the objects may be available as several models.
Furthermore, the objects may be collected into clusters of objects when observed at great distance.

Temporal relations

When there are changes over time between the spatial relations between the analyst and the objects,
temporal relations occur. Two concepts may be used to describe temporal relations: Navigating in a
static 3D space, and temporally varying 3D space.

Navigating in a static 3D space
When navigating in 3D space two situations may occur. Eitherthe analyst is moving around between the
objects or the objects are moving around the analyst. The latter situation refers to a stationary analyst
and a dynamic 3D space. For both situations three forms of 3D motion may be described according to
[Granum and Musaeus, ]:

Radial motionrefers to motion in depth where the observer is moving away from or toward an object.

Lateral motionrefers to the observer moving sideways in the frontal plane.The perspective transforma-
tion of the analyst causes the proximal points to have higherrelative velocities on retina (image plane)
than distant points. This phenomenon is called motion parallax, and gives the observer information
about the relative depth of points.

Rotational motionrefers to the analyst circling around the object. Perceptually this corresponds to the
object being turned around in front of the analyst. The object can refer to a single object or the entire
3D coordinate system with all its objects.

Navigating in a temporally varying 3D space

19



CHAPTER 2. VISUAL DATA MINING

Objects in 3D space may have individual movements such as rotation and vibration. This can be used
on data where temporal sampling is an attribute of the statistical information and therefore should be
visualised in order to show temporal relations.
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CHAPTER 3
Virtual Reality

The possibilities of Visual Data Mining (VDM) are increasing with the development of Virtual Reality
(VR), which enables the user to immerse and interact in a real-time visual presentation of data sets.
This chapter will describe the concept of virtual reality and a software framework, VR++, for hosting
VR-applications.

3.1 Definition of virtual reality

Source: [Sherman and Craig, 2003]
The wordvirtual is for instance used in computing systems as extensions of the hardware, emulating
the real thing through another source. It is also used to simulate virtual worlds1 where objects exist
virtually in that world. These objects are merely images of the physical object they represents. The
word reality is defined in different ways. [Sherman and Craig, 2003] simplifies it for the purpose of
virtual reality, and defines it as a place that exists and thatcan be experienced.

The two words combined is virtual reality, which is the simulation of a real or imagined environment,
that can be experienced visually in the three dimensions of width, height, and depth and that may
additionally provide an interactive experience visually in full real-time motion with sound and other
forms of feedback. The simplest form of virtual reality is a 3D image that can be explored interactively
at a personal computer, usually by manipulating keys or the mouse so that the content of the image
moves in some direction or zooms in or out. As the images become larger and interactive controls more
complex, the perception of "reality" increases. More sophisticated efforts involve such approaches as
wrap-around display screens, actual rooms with wearable computers, and devices that lets the users
feel that they are mentally present in the display images, for example joysticks and data gloves. In
this way users can receive feedback from computer applications in the form of felt sensations in the
hand or other parts of the body. Virtual reality can be described in terms of immersion, interaction, and
real-time. This may be illustrated as shown in figure 3.1 on the following page.

Immersion is the feeling of being in the 3D virtual space. There are two states of immersion; mental
- and physical immersion. Mental immersion is defined as being deeply engaged. The physical
immersion is entering the medium of virtual reality. Stimulation of the body senses via the use of
physical feedback devices.

Interaction is the possibility of moving in 3D space and manipulate with virtual objects.

Real-time is action which immediately can alter the virtual space.

1An imaginary space often manifested through a medium.
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CHAPTER 3. VIRTUAL REALITY

Immersion

Interaction


Virtual Reality


Realtime


Figure 3.1: Defining virtual reality in a triangle form. Immersion, interaction and real-time are the elements
which define virtual reality. [Thalmann, 2004]

3.1.1 Virtual reality features

Source: [Sherman and Craig, 2003]
Virtual reality is a unique medium because of the features. Summarising some of the features:

• The opportunity of being multiple simultaneous users.

• The ability to manipulate with time and space.

These features combined in the same medium gives a dynamic relationship between the participant and
the medium. Figure 3.2 on the next page shows a user in a wrap-around display screen, also called
a cave, interacting with the medium through stereo glasses.When viewed through lightweight stereo
glasses, the left/right stereo images are presented separately to the left and right eyes respectively,
producing the illusion of 3D objects appearing both within and beyond the walls of the Cave. The
images are presented with reference to the users view point,which is continuously updated via a head-
tracking unit; thus even as the user moves around in a Cave theenvironment displayed will always be
in a correct perspective. The Cave shown in the figure is located at Aalborg University and is specially
suited for research and design development.

3.2 VR++

Source:[Nagel and Granum, 2002]
In virtual reality many software and hardware parts have to work together, to facilitate different ways
of presenting virtual reality and handling user interaction.

VR++ is an open-source framework for creating modular VR applications and consists of a set of
libraries which make it easier for the user to make differentapplications. These libraries, also called
add-on packages, contain applications ready to execute as sound-, graphic-, datapackages etc.. VR++
is a distributed system, based on the master/slave principle, which coordinates work amongst multiple
processes. To fully exploit the possibilities of distributed computing, these processes can be placed on
different machines. In the system a single master distributes the various processes to multiple slaves.
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3.3. SURFACE BASED RENDERING

Figure 3.2: A user in a wrap-around display screen interacting with the medium through stereo glasses. Source:
[vrl, 2002].

Each slave processes an assignment by the use of a certain task. A task is an implementation of an
algorithm and is given processing time by the slave to which it belongs. The tasks communicate with
each other through a standard data interface, so that tasks developed for VR++ automatically becomes
compatible with each other and thereby make it easier for different users to integrate several projects.

3.3 Surface based rendering

Source: [Shreiner et al., 2003]
As mentioned before 2D geometric primitives is how a 3D object is represented. All geometric primi-
tives are eventually described in terms of their vertices - coordinates that define the points themselves,
the endpoints of line segments, or the corners of polygons (triangle).

Three common geometrically (surface) based graphical representations are the polygonal, which is
mentioned in appendix A, non-uniform rational B-splines (NURBS), and constructive solid geometry
(CSG) schemes.

Polygonal can be used to represent shapes described by NURBS and CSG, although with some loss
of information. Many algorithms designed to speed up polygonal rendering methods have been
integrated into hardware geometry engines and, as a result,hardware graphical rendering systems
almost exclusively make use of the polygonal method.

NURBS are parametrically defined shapes that can be used to describe curved objects.

CSG are objects created by adding and subtracting simple shapes(spheres, cubes, cylinders, etc.).
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3.4 Non-surface Based Rendering

Source: [Volumizer, 2004]
Surface based methods work best with solid, non transparentobjects. When surfaces are transparent,
surface based rendering techniques may not be the best choice; this is particularly true when a space is
occupied by varying densities of semi translucent material(e.g., patchy fog or the human body when
viewed via X-rays or MRI scans). In such cases, non-surface based methods may offer certain advan-
tages when representing objects in a computer based virtualworld.

3.4.1 Volume Rendering

Volume Rendering is well suited for rendering semi transparent objects. Volume Rendering is the
process of generating an image directly from the volume datawithout the generation of an intermediate
geometric model. Typically this is done by mapping the data values in the volume to the colour and
opacity of an imaginary semi-transparent material, and then rendering an image of this material. Data
values of interest can be assigned high opacity values and a specific colour to highlight their location
within the volume while other data values can be assigned lowopacity values to reduce their visual
importance. It is also possible to render geometric and volumetric primitives together, allowing the
inclusion of geometric primitives such as coordinate axes and other reference objects. This technique
is useful for displaying relationships between areas of interest that are not well defined in a geometric
sense. It is also useful for displaying the volume around areas of geometric interest, such as the volume
near an isosurface.

In the following, four Volume Rendering techniques are described in terms of Fourier Volume Render-
ing, Splatting, Shear Warp Factorisation and Volume Slicing.

Fourier Volume Rendering

Source: [Lichtenbelt, 1995]
Fourier Volume Rendering (FVR) computes projection of a three dimensional data set and is faster
than a conventional volume rendering method, because the complexity is reduced. This is done by first
transforming the data set into the frequency domain by either a 3D Fast Fourier Transform (FFT) or the
Fast Harley Transform (FHT). Then the projection image is generated directly from the volume data
at any viewing angle by resampling along a plane perpendicular to the viewing direction, and taking
the inverse 2D transform of the resampled plane. The projection can be used to visualise 3D data sets.
The Fourier projection slice theorem also holds in higher dimensions. For the 3D case it can be stated
as follows: The 2D Fourier transform of a 2D projection of a 3Dobject, at an arbitrary angle, is a 2D
plane passing through the origin of the 3D Fourier transformof that 3D object, at the same angle. A
projection is a mathematical operation, to be compared withtaking an X-ray picture of a 3D object. A
ray is cast through the data set, and samples are taken along the ray. Those samples are composited into
a pixel value and projected on the screen.

The advantage of FVR is that the 3D Fourier transform only hasto be computed once.
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3.4. NON-SURFACE BASED RENDERING

Splatting

Source: [Silva, 1995]
Another volume rendering technique is to reconstruct an image from the object space to the image
space, by computing for every voxel in the data set, its contribution to the final image. This technique
is called Splatting. The projection of each voxel onto the final image leaves a fuzzy impression, called
a footprint or a splat. Splatting classifies and shades the voxels prior to projection, and thus each voxel
splat is weighted by the assigned voxel colour and opacity. The resulting image is a uniform screen
image for homogeneous object regions. However, due to to fuzzy appearance of the splats the edges of
the object appears blurry.

Shear Warp Factorisation

Source: [Lacroute and Levoy, 1993]
This algorithm combines the advantages of image-order and object-order algorithms. Image-order al-
gorithms operate by casting rays from each image pixel and processing the voxels along each ray. The
advantage is efficient and high quality resampling, but the processing order also has the disadvantage
that the spatial data structure must be traversed once for every ray, resulting in redundant computation.
In contrast, object-order algorithms operate by splattingvoxels into the image while streaming through
the volume data in storage order, which speeds up the process. Another advantage is the simpler ad-
dressing arithmetic. The disadvantage of the processing order is that it is harder to implement effective
optimisation in ray-casting algorithms.

Mapping from object space to image space requires high quality filtering and projection in the object-
order algorithm and extra addressing arithmetic in the image-order algorithm. To avoid these problems
it is being solved by transforming the volume to an intermediate coordinate system, a sheared object
space. This is based on a factorisation of the viewing matrixinto a 3D shear parallel to the slices of the
volume data, a projection to form a distorted intermediate image, and a 2D warp to produce the final
image, as shown in 3.3. For a perspective projection each slice is scaled.

Figure 3.3: To transform a volume into sheared object space for a parallel projection, the slices has to be
translated. Source: [Lacroute and Levoy, 1993].

The advantage of Shear Warp Factorisation is that scanlinesof the volume data and scanlines of the
intermediate image are always aligned, which can be seen in figure 3.4 on the next page.

The Shear Warp Factorisation allows implementation of coherence optimisations for both the volume
data and the image with low computational overhead, becauseboth data structures can be traversed
simultaneously in scanline order.
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Figure 3.4: First the volume is transformed by translating and resampling each slice. Then voxel scanlines are
projected onto the intermediate image scanlines. Finally the intermediate image is warped into the final image.
Source: [Lacroute and Levoy, 1993].
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CHAPTER 4
Current research

This chapter describes other projects researching 3D visual data mining using volumetric objects in 3D
space.

The following sections outlines the methods described in five different research papers. However, the
four papers describe the research done on the Stereoscopic Field Analyzer, and thus are all desribed in
one section.

Iconic Techniques for Feature Visualization

Source: [Post et al., 1995]

The paper studies a conceptual framework and a process modelfor feature extraction and iconic visu-
alisation. The visualisation of the icons is based on the pipeline shown in figure 4.1.

Data generation


Feature extraction


attribute


calculation


Iconic mapping


Display


Field data


Attribute sets


Visual primitives


Figure 4.1: The pipeline used to visualise icons. Source: [Post et al., 1995].

For each data set features are extracted, if they are of some relevans for the system. For each of these fea-
tures attributes are calculated. An attribute is a characteristic parameter of the feature. In the studie the
result of the feature extraction and attribute calculationis a set of attributes, which characterize the fea-
ture. The iconic mapping of an attribute set is a mapping of the attributes onto the parameters of icons.
This is done in order to visualise features by objects in a clear perceivable way, in which there should
be some similarity relation between the features and their iconic representations. [Post et al., 1995] di-
vides the attributes into three different categories: Geometric/Morphological attributes, data attributes,
and combined morphological/data attributes.

Geometric/morphological attributes describe the spatial propoerties of a feature such as height, width,
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volume, centroid, and shape.

Data attributes describe the properties of the data over a feature such as minima and maxima.

Combined morphological/data attributes describe both spatial and data properties of a feature such
as center of gravity in a density field.

The modelling of icons is performed by a modelling language developed by [Post et al., 1995] with
which the geometrical primitives can be defined and the parameters of these primitives can be bound
to the attribute set. The construction of the geometric primitives is performed in three steps, which, by
[Post et al., 1995], are:

1. A 2D contour in thex-y plane is designed and colours or colour-maps are bound to this contour.
This contour can consist of line-segments or parametric functions. The coordinates of the line-
segments, the constants of the parametric functions, and the colours or colour-maps can be bound
to the attribute set.

2. This contour is extended to a 3D object by performing a rotation sweep around thex or y axis,
performing a translation sweep by moving the contour along an axis over a given length, or
performing a general sweep along a arbitrary 3D trajectory.The parameters of the function that
defines the 3D trajectory can also be bound to the attributes.

3. This 3D object is scaled, translated, rotated or deformed. In this way the objects can be put on their
location in the data set or to their relative location in a complex object. The values defining the
rotation, translation, scaling or deformation are also bound to the attribute set.

Stereoscopic Field Analyzer

The studies regarding the stereoscopic Field Analyzer (SFA) have been performed through several
years by several different people. The SFA allows the visualisation of both regular and irregular grid
of volumetric data and combines glyph based volume rendering with two-handed minimally-immersive
interaction metaphor. The SFA is able to encode up to 8 attributes per glyph, based on the glyph’s
location, 3D size, colour, and opacity. Four papers dealingwith the SFA have been analysed. These
are:

• Data Visualization Using Automatic, Perceptually-Motivated Shapes, [Shaw et al., 1998].

• Minimally-immersive Interactive Volumetric Information Visualization, [Ebert et al., 1996a].

• Two-handed Interactive Stereoscopic Visualization, [Ebert et al., 1996b].

• Procedural Shape Generation for Multi-dimensional Data Visualization, [Ebert et al., 1999].

In the following the studies regarding volume rendering andvisualisation of glyphs in each paper will
be described shortly.

28



Data Visualization Using Automatic, Perceptually-Motiva ted Shapes

Source: [Shaw et al., 1998]

This paper studies the extension of SFA by glyph rendering with other visually salient features to
increase the number of data dimensions to be visualised simultaneously. The feature applied to the SFA
is shape in terms of superquadrics. The shape of an object in 3D is formed by the objects curvatures.
[Shaw et al., 1998] states that the curvature has a visual order, since a surface of higher curvature look
more jagged than a surface of low curvature. Furthermore it is stated that a generation of glyphs, which
interpolate between extremes of curvature allow the user toread scalar values from the glyph’s shape.
Each glyph in the extension uses normalized data in the range[0,1], which is mapped into the domain
of the corresponding glyph attribute.

Minimally-immersive Interactive Volumetric Information Visualization

Source: [Ebert et al., 1996a]

This paper studies the general concept of SFA regarding information visualisation. The information
visualisation is performed using glyphs’s location, size,shape, colour, and opacity. It is stated that the
system minimizes the occlusion problems of surface rendering and some volume rendering through
the use of glyph rendering, transparency, interactivity, stereo-viewing, interactive manipulation, and
interactive volume segmentation and subsetting. Furthermore the SFA allows several different data sets
to be visualised at the same time in the same coordinate system, making comparison of trends among
related data sets possible.

Two-handed Interactive Stereoscopic Visualization

Source: [Ebert et al., 1996b]

This paper studies the general concept of SFA regarding usercontrol. SFA offers control of the visual-
isation in numerous ways, including selection of the glyph type and data set mapped to glyph colour.
In order to control the colour, three colour tables are used,depending on the properties of the data file
and the number of data files being displayed. For grids with only positive or negative scalar values, any
pseudocolour table may be used. If both negative and positive values are to be displayed, the scalar
value 0.0 is mapped to colour 128 and the maximum magnitude ismapped to colour 255. This results
in a symmetric colour table about the 128th entry. The third colour table is used for displaying several
data sets a once. It is possible to map one colour to each data set allowing the data sets to be visually
separated. [Ebert et al., 1996b] states that the user typically choose a distinguishable hue for each data
file, with the colour ramping from low to high saturation. Furthermore, the user is able to choose to
concentrate on a particular subset of the volume and to choose only thenth grid points to be displayed,
reducing the number of glyphs drawn.

Procedural Shape Generation for Multi-dimensional Data Vi sualization

Source: [Ebert et al., 1999]

This paper studies the extension of SFA by glyph rendering using shape as a feature. As mentioned in
[Shaw et al., 1998], the curvature information of a shape mayhelp distinguish shapes from one another.
The paper studies three different procedural techniques for the generation of glyph shapes: Fractal
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detail, superquadrics, and implicit surfaces. The main idea of fractal detail is to generate distorted
versions of a basic shape e.g. where low data values map the basic shape and high data values map
to very perturbed shapes. In order to create the deviation ofthe basic shape, displacement mapping
is used. [Ebert et al., 1999] suggests the use of superquadrics which can allow from one to two data
dimensions to be visualised with shape. Superquadrics comein four main families: Hyperboloid of
one sheet, hyperboloid of two sheets, ellipsoid, and toroid. [Ebert et al., 1999] chooses superellipses
for implementation due to their familiarity. Furthermore [Ebert et al., 1999] suggests that supertoroids
could be used to represent negative values of a data set and superellipsoids could represent positive val-
ues. Using the superellipses, exponents are assigned to thetrigonometric terms of these. The exponents
allow continous control over the characteristics of the shape in the two major planes, which intersect
to form the shape. In figure 4.2 the varying of the exponents resulting in a smooth, understandable
transition in shape, can be seen.

Figure 4.2: Variation of the exponents in superquadrics. Source: [Ebert et al., 1999].

Implicit surfaces use an underlying density field to represent volumetric information. Implicit tech-
niques provide smooth blending functions for individual implicit field sources. Isosurface generation
techniques are used to create a geometric representation ofthis volumetric density field. With the im-
plicit shape visualisation it is possible to map up to 14 datadimensions to uniformly spaced vectors
emerging form the center of a sphere. The length of the vectors is scaled based on the data value being
visualised.
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CHAPTER 5
Current software

This chapter describes the current software available for use in the field of 3D visual data mining
systems, and software available for volume visualisation applications.

The following sections describe the 3DVDM system, which holds applications for virtual reality in the
field of visual data mining, and the OpenGL volumizer which isan application programming interface
designed for volume visualisation applications.

5.1 The 3DVDM system

Source: [Nagel et al., ]
Technology to store and process large amounts of data has during the last few decades improved dra-
matically. This has led many companies to store ever increasing amounts of customer information in
large databases. The hope has been that it would be possible to discover unknown relationships in the
data, and thereby obtain a knowledge which can give commercial advantages. However, finding hidden
relationships in large amounts of data is not easy. Purely numerical methods have been supplemented
with visual methods. This has led to the emergence of Visual Data Mining (VDM).

The 3DVDM system extends the field of VDM with virtual realitytechniques to create new methods
for exploration of data in VR. The system is able to mine largedatabases by combining facilities for
advanced VR with expertise in database systems, statistical analysis, perception psychology and visu-
alisation. Researchers in the database area are responsible for handling and delivering large amounts of
data from databases. Statisticians are responsible for finding interesting problems, creating statistical
models for data analysis, and guiding the entire project in experiments of 3DVDM system. Perception
psychology researchers are responsible for finding ways of good interaction and human perception of
the VR environment.

The 3DVDM system is a collection of VR++ applications, whichis a software framework, and is
explained in section 3.2 on page 22. The 3DVDM system is basedon a visual world, where statistical
observations are represented in a 3D scatter plot and shown in either a 6-sided Cave, a180◦ Panorama,
and on regular computer monitors. Each data point in the plotis shown as a visual object, such that
statistical variables may also control various visual object properties such as object shape, orientation,
colour, and surface texture. The purpose is to present data from within and to allow the human observer
as a visual explorer to navigate the visual world, in order toinspect data in arbitrary view directions and
from arbitrary viewpoints.

5.2 SGI OpenGL Volumizer

Source: [Volumizer, 2004]
The OpenGL Volumizer is an application programming interface (API) created by Silicon Graphics Inc.
(SGI), enabling a programmer to create hardware optimised applications for several platforms with a
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single code base. OpenGL Volumizer is designed for volume visualisation applications and is a toolkit
built on top of OpenGL. Volumizer uses a technique similar toray casting, called volume slicing, to
leverage the texture mapping hardware many workstations now have.

Figure 5.1: Processing a volume through volume slicing. Source: [Volumizer, 2004].

In Volumizer, all points on a plane, orthogonal to the line ofsight, are computed sequentially in the
texture mapping hardware.

In this technique the volume is sampled in surfaces orthogonal to the viewing direction as shown in
figure 5.1. When the rays have intersected the points along one plane the volume is processed. The
distance is incremented and the processing occurs again from all points on all the rays in the new plane.
Processing the points continues until the plane of points moves beyond the viewing frustum, at which
point the processing terminates.

The advantage of volume slicing is that it is faster than ray casting because computations are performed
by the dedicated texture mapping hardware, whereas ray casting is performed by the CPU. For further
details about SGI OpenGL Volumizer, see appendix B.



Part II

System Requirements
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CHAPTER 6
Analysis of Requirements

In this chapter the delimitations, perceptual requirements, and technical requirements of the visual data
mining system are defined.

Delimitations of the Project

Due to lack of resources this project can not cover all aspects of the various volume rendering and
visual data mining techniques. Therefore, only volume slicing and shear warping will be analysed as
volume rendering techniques. Furthermore, the only data mining technique that will be analysed is 3D
visual data mining. The analysis of visualisation of objects is founded on earlier research, as perception
psychology is beyond the scope of this project. Given the project unit description for 8th semester
CVG, virtual reality and the VR++ framework will not be further analysed. Furthermore, due to lack
of resources, the graphical user interface and the various techniques used to create a graphical user
interface will not be analysed, and thus only a simple graphical user interface will be designed and
implemented.

Perceptual Requirements

The perceptual requirements for the system are:

• From a perceptual point of view, the system should express as many feature dimensions as per-
ceptually clear as possible.

• The level of detail of the objects should be high enough not to reveal that the objects are actually
simple geometry with transparent textures.

• When navigating through the 3D space, the perceptual requirement is a frame rate, that gives the
impression of flying between the objects.

Technical Requirements

Rendering framework

When using hardware accelerated graphics on several different operating systems, only one Application
Programming Interface (API) exists, Open Graphics Library(OpenGL). To minimise problems when
using the system with different operating systems, using OpenGL in conjunction with the windowing
package Graphics Library Toolkit (GLUT) is ideal for ensuring minimal operating system dependent
adaptations.
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When visualising database records as objects in 3D space, there are two possibilities: Rendering the
entire 3D space as one volume, or rendering each object as a volume.

Rendering the entire 3D space as one volume

The approach of rendering the entire 3D space as one volume results in a set of requirements to the
visualisation system. The primary requirement is for the resolution of the volume. Each object is a very
small part of the entire volume, and if a large amount of details for each object is required, the resolution
for the entire volume has to be very high. If the resolution ofthe volume is very high, the requirements
to the memory used to store the volume is proportionally high, as is the CPU time required to render
the scene.

The OpenGL-language can only handle textures with a maximumresolution of 256x256. This means
that in order to visualise a high resolution volume, with a great level of detail, the system is required
to subdivide the rendering of the volume into subregions, inorder to maintain an acceptable level of
detail.

The advantage of rendering the 3D space as one volume is that once the 3D space volume has been
created, the system can handle an infinite amount of objects,as the requirements to the system remain
the same no matter how many objects that are to be visualised.This ensures the designer total freedom
in the possibilities of expression.

Rendering each object as a volume

When utilising the one volume per object approach, the requirements to the system memory is propor-
tional with the amount of objects and the resolution of each volume. This means that the amount of
available system memory sets the limitation to the amount ofobjects and their resolution.

The rendering time for this approach may, if all objects are rendered with the highest level of detail, be
very high. If the level of detail for each object and the levelof geometry complexity are reduced, it is
possible that the navigation in the 3D space can be optimisedto show the objects while navigating.

Discussion

The perceptual requirements are the basis for the selectionof method. The following table is a summary
of the advantages and disadvantages for the "one volume" approach.

Advantages Disadvantages
-No limitation in the amount of objects
visualised

-With high level of detail the memory
requirements are high

-Always uses the same amount of
memory independent of the number of
objects

-Navigation will be very CPU intensive
= low frame rate

A similar table can be set up for the "one volume per object" approach.
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Advantages Disadvantages
-Level of detail can be varied for each
object

-The memory sets a limit to the amount
of objects

-Navigation may be possible without
too much CPU time

Both methods are equally effective, in being expressive foreach object. However, the "one volume"
method may have an infinite amount of objects, whereas the "one volume per object" method has a
finite amount in terms of memory usage.
If the "one volume" method is to be utilised with a high level of details, the amount of memory required
to visualise the objects is very large.

To exemplify this the following comparison a scenario has been created:

Example: The values used in this example are just for this example, andare not requirements for the
system.
If, for each object, a voxel space with the dimensions64 × 64 × 64 is required, and the ratio between
the object size and the 3D space is set to1 : 128, the "one volume" approach requires a voxelspace with
(64 · 128)3 ≈ 550 · 109 voxels. If each voxel is a 32-bit value the required memory tostore the volume
is:

32 · (64 · 128)3
8 · 1024 · 1024 · 1024 · 1024 = 2TB

For the same amount of memory the "one volume per object" approach will with the same dimensions
for each object, be able to store1283 = 2, 097, 152 different records.

As the example shows, the only case where the "one volume" approach has its advantage memory-wise,
is when the 3D space is filled to the limit with objects. The "one volume" stores a lot of waste space,
whereas the "one volume per object" only saves the voxels with a content. Though the "one volume"
approach is more flexible as to the amount of objects, the "onevolume per object" approach is more
efficient in its storage of these.

When the system navigates through the 3D space, the "one volume" method is not very efficient, as the
system has to evaluate a large number of voxels for each frame. However the "one volume per object"
method has wide possibilities to degrade the level of details on each object when navigating, or simply
just displaying a bounding box for each object.

6.0.1 Conclusion

The "one volume per object" approach is through the above comparisons the best method of visualising
the 3D space. With this approach each object can have a high level of detail, that expresses many
features, dependent on how the visualised objects are designed. The approach allows a creative solution
on the navigation problem, as each object can be rendered separately. The "one volume per object"
approach is memory-effective, it only stores volumes for the object and not for the space with no
objects.

Based on this evaluation, the "one volume per object" approach will be chosen as the method with
which the objects are to be visualised. If this method is implemented dynamically, it can also be used
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to support the "one volume" approach.

For implementation OpenGL will be used.
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CHAPTER 7
Specification of Requirements

Introduction

In the specification of requirements a description of the system, which systematically sets out the re-
quirements, is prepared. The requirements are based on the problem domain, the analysis of require-
ments. The specification of requirements is based on the SPU method (Struktureret Program Udvikling).
Source: [Biering-Sørensen et al., 1988]

Purpose

The initial hypothesis of this project is that the ability todisplay advanced objects in a 3D visual data
mining system will aid the process of exploring large data sets.

The hypothesis entails developing a rendering engine, ableto display advanced graphical objects. For
this engine an OpenGL based volume rendering engine is the basis.

References

The requirements in this specification are based on the analysis of requirements, see chapter 6 on
page 34.

General description

In the following the system will be described in terms of the functionality of the programme, the limi-
tations of the programme, and the future of the programme.

Description of the system

The aim of the project is to develop a system with the ability to display advanced objects in a 3D visual
data mining system. In order to do this a volume rendering engine has to be developed. Volume ren-
dering is a technique which allows rendering of complex shapes from image volumes. The appearance
of the advanced objects is controlled by the object featuresto which data dimensions are mapped. The
user must be able to remap the data dimensions to other features. Furthermore, the user has to be able
to navigate through the 3D space.
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The functionality of the programme

The overall structure of the programme may be seen in figure 7.1. The input to the system is normalised
data from a database, with values between 0 and 1. The normalised data is mapped to visual structures
depending on the various features of each record. The user ofthe system will be prompted to choose
which feature dimensions to be visualised and how and furthermore the user has to be able to remap
dimensions of the data set to features. The final structures have to be visualised as volumes in 3D space.

Figure 7.1: The overall structure of the programme.

For each data set a specified number of features must be shown on a specified type of object. As
described in the analysis of requirements, chapter 6 on page34, the system will be made so that each
object is rendered as one volume. Due to this, the programme has to be capable of rendering each
volume and of producing a frame rate, which gives the impression of flying when navigating through the
3D space. Depending on the placement of the view point, the geometry representing each object must be
reduced proportionally to the distance of the view point. The system utilises orthogonal projection as it
is not important to get a perspective view of each record in order to get a good perceptual understanding
of the entire 3D space.

Based on the description of the functionality of the programme, the overall structure of the programme
may be described by the flow diagram seen in figure 7.2

Data

Generate


volumes
 Volumes

Render


volumes

Draw


Navigate
UI


Figure 7.2: The overall flow diagram of the programme.

The limitations of the programme

When navigating through the 3D space, the system is limited to only rendering simple geometry for
each volume. This is done to display the volumes in real-time.

The future of the programme

The programme is developed so that it may be used as a general component in the VR++ software
framework. This way it may be used to visualise any kind of data. Furthermore, the programme is to
be integrated with the 3DVDM system, so this system can visualise more complex shapes.
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Specific requirements

Definitions

The following definitions will be used in the programme:

• The resolution of the voxelspaces and the dimensions of each voxelspace in 3D space will be user
defined.

• The colour channels applied to the voxelspaces are 32 bit RGBA (Red Green Blue Alpha, channel
order).

• The ratio between the object size and the 3D space will be user defined.

• The requested frame rate during navigation is 15 fps.

Functional requirements

Each step of the programme shown in figure 7.2 on the precedingpage will be described in the following
in terms of input, functionality, and output.

User interface

Input
Interaction from the user of the system.
Functionality
Allows user to determine object type, how data is mapped to object features, and which features that
are to be visualised.
Output
A definition of which dimensions that are to be described withwhich features.

Generate volumes

Input
A definition of which data dimensions that are to be mapped to which object features. Furthermore, the
step has normalised data as input.
Functionality
Generates the visual structures for each record and stores them as volumes.
Output
Volumes.

Volume

Input
Volumes generated by the generator.
Functionality
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Storage for volumes.
Output
Volumes.

Render volumes

Input
Volumes. View point. Notification of end of navigation. Level of detail.
Functionality
This step makes the view point specific geometry and texture calculations for all volumes in a specified
detail level.
Output
Textures and geometric objects.

Navigate

Input
View point. Interaction from the user, indicating movementwithin the visualisation
Functionality
This step makes new geometry and texture calculations for all volumes in low detail, to maintain a high
frame rate during navigation. When navigation stops, theRender volumesstep is notified to make
calculations.
Output
Textures and geometric objects. Notification toRender volumesstep.

Draw

Input
Textures and geometric objects.
Functionality
Draws the geometry and texturizes it.
Output
A visualisation of the data.

External user interface requirements

User interface

The functional requirements for the user interface are specified in four main functionalities:

Object: User is prompted to choose between various visualisation objects.

Feature mapping: User is prompted to choose which data dimensions are mapped to object features.

Number of records: User is prompted to choose the number of records to be visualised.

Mouse clicks: The system has to be able to detect mouse clicks on objects within the 3D window.
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A more specific description of the user interface may be seen in chapter 12, 12.6.
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CHAPTER 8
Acceptance test specification

When the programme has been implemented an acceptance test of the system is performed. The purpose
of the acceptance test is to control the functionality of theprogramme specified in the specification of
requirements, chapter 7, section 7.

The specific requirements for the system are:

• The structures have to be visualised as volumes in 3D space.

• User is prompted to choose between various visualisation objects.

• User is prompted to choose which data dimensions are mappedto object features.

• User is prompted to choose the amount of records to be visualised.

• The user has to be able to navigate through a visual representation of the a given data set.

• The requested frame rate during navigation is 15 fps.

Test cases

The test cases are divided into three groups: functionality, performance, and object perception.

Functionality

The functionality of the programme is tested through two test cases. The two test cases are:

Mapping is testing a normalised data set, which consists of 50 records with 4 data dimensions for each
record. If the data dimensions are mapped correctly to the features the test is successful.

Continous remapping involves testing whether continous remapping of data dimensions to object fea-
tures is possible. The test is a success if remapping occurs correctly.

Performance

The performance of the programme is tested through two test cases. The two test cases are:

Frame rate the frame rate is tested in both navigational mode and high definition mode, with a scene
containing 50 glyphs and a scene containing 1000 glyphs.

Reslicing the reslicing time for a scene containing 50 glyphs and for a scene containing 50 glyphs is
tested.
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Perception

The perception of the programme is tested through one test cases. The test case is:

Object perception the object perception in the system is tested using select test cases from the article
[Raja et al., 2004].



Part III

Analysis
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Introduction

The aim of the project is to allow display of advanced objectswith a 3D visualdata mining system. Some
advantages of combining volume rendering with visual data mining are the ability to display advanced
objects both interior and exterior, which increases the possibility of mapping multi-dimensional data
sets to features.

When developing a system, which is capable of displaying advanced objects, three main concepts are
to be analysed:

• Perceptual possibilities

• Conceptual possibilities

• Performance

In the following the three concepts will be described briefly. Furthermore, a graphical user interface for
the project will be described.

Perceptual possibilities

The perceptual possibilities will be analysed by defining three test objects to be used in the project
based on various visualisation features. The mapping of thefeatures onto an object is founded on
earlier research, as perception psychology is beyond the scope of this project.

Conceptual possibilities

To visualise the objects a volume rendering technique will be used. The fundamentals of this technique
is to slice each volume into a number of planes to which a texture is mapped. The volume rendering
techniques being analysed are volume rendering using planegeometry, volume rendering using 2D
texture stacks and shear warping. Additionally, shading methods will be analysed.

Performance

Using a volume rendering technique for visualising objectsdemands much CPU processing time due
to the fact that each texture has to be re-calculated when theview point is changing. Therefore various
methods for reducing the utilisation of memory are analysed.
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Visualisation of objects

The perceptual possibilities will be analysed by defining three test objects to be used in the project
based on various visualisation features. The mapping of thefeatures onto an object is founded on
earlier research, as perception psychology is beyond the scope of this project.

The general concept of visual data mining is to map data from data tables onto a visual structure through
human interaction. The concept may be seen in figure 9.1 and may be applied to several dimensions of
an object space.

Raw data Views
Visual

structures
Data tables User

Data
transformations

Visual
mappings

Visual
transformations

Data Visual form

Figure 9.1: Visualisation of data achieved by human interaction. Source: [Card et al., 1999]

9.1 Visual structuring

When a multi-dimensional data set is to be visualised, it is important to have many visualisation param-
eters available in order to map as many of the dimensions as possible to a visual structure in 3D space.
There are some parameters which are more perceivable than others by the user, therefore it is impor-
tant to map the most significant dimensions with the strongest perceivable parameters. In chapter 4 on
page 27 several visualisation techniques are purposed in the various papers. Furthermore, several vi-
sualisation parameters are described in chapter 2 on page 14. The techniques and the parameters will
be used to construct test objects for the system. The test objects will be constructed based on the visu-
alisation technique of developing distorted versions of a basic shape, proposed by [Ebert et al., 1999].
Furthermore, also is proposed by [Ebert et al., 1999], data values are mapped to the exponents, which
controls the shapes overall flavour. This mapping will also be used in the construction of the test ob-
jects. For each test object is has been evaluated how many of the visualisation parameters that can be
used.

9.2 Test objects

In 3D space objects representing data records are referred to as glyphs. The definition of a glyph is
when the volume is rendered and shown in the 3D space. The definition of a volume is when it is still
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CHAPTER 9. VISUALISATION OF OBJECTS

represented in voxelspace. For each record it is assumed that the data has been scaled so the values lie
between 0 and 1.

In the following three different glyphs will be proposed. The main idea for each proposed glyph is to
have two different shapes that are significantly different from each other, and make a morphing between
them according to a feature value. As specified in the specification of requirements, see chapter 7 on
page 38, the three proposed glyphs are examples of how glyphsmay be customised for the system.

9.2.1 Cross glyph

The basic shape for this glyph is a cube, and the morphing shape is a cube with the sides grown out as
bulges. An example of this can be seen figure 9.2.

Figure 9.2: The cross glyph with bulges defined by the values of the data.

The cube has been chosen as basic shape upon the assumption that the basic shape should be one that
is easily recognisable and simple. As the value of the data increases bulges appear on each side of the
cube. These bulges have a set size according to the value of the data. A data value of 1 results in bulges
that makes the glyph three times as long as the cube. By using this glyph it is possible to represent
features using the following variables:

• Position - x, y, z coordinates, representing three features

• Colour - two dimensions, representing two features

• Transparency, representing one feature

• Shape, representing one feature

• Texture, representing one feature

• Sound, representing one feature

• Specular, representing one feature

For a detailed mathematical description of the cross glyph,see appendix C on page 107.

9.2.2 Diamond glyph

The glyphs’s basic shape is a cylinder representing a data value of 1, see figure 9.3 on the next page.
As for the cross glyph the basic shape is based on being easilyrecognisable and simple.
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Figure 9.3: The diamond glyph.

As the value of the data increases the cylinder evolves a diamond shape. The diamond shape is based on
the research paper done by [Ebert et al., 1999], see figure 4.2on page 30, where a superquadric shape
is used. By using this glyph it is possible to represent features by the following variables:

• Position - x, y, z coordinates, representing three features

• Colour - two dimensions, representing two features

• Transparency, representing one feature

• Rotation, representing one feature

• Shape, representing one feature

• Texture, representing one feature

• Sound, representing one feature

• Specular, representing one feature

For a detailed mathematical description of the diamond glyph, see appendix C on page 107.

9.2.3 Hourglass glyph

The basic shape of the glyph is a cylinder representing a datavalue of 1, see figure 9.4.

Figure 9.4: The hourglass glyph.

As for the cross glyph the basic shape is based on being easilyrecognised and simple. As the value of
the data increases, the cylinder evolves an hourglass shape. The hourglass shape is an advanced type of
shape but yet easily recognisable as an object. By using thisobject it is possible to represent features
by the following variables:

• Position - x, y, z coordinates, representing three features
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• Colour - two dimensions, representing two features, can beapplied three places, making the total
features six.

• Transparency, representing one feature

• Rotation, representing one feature

• Shape - glass-shape and sand level, representing two features

• Texture applied to the sand in the hourglass, representingone feature

• Sound, representing one feature

• Specular, representing one feature

For a detailed mathematical description of the hourglass glyph, see appendix C on page 107.

Discussion

Based on the analysis of the visualisation of objects three test objects have been created. All three
objects are generated on the visualisation technique of developing distorted versions of a basic shape.
Furthermore, data values are mapped to the exponents, whichcontrol the shapes overall flavour. The
choice of the object properties used to generate the test objects is based on the assumption that it is
possible to achieve a perceptually good visualisation of the data set where it is possible to detect visual
tendencies.
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CHAPTER 10
Volume Rendering

To visualise the objects a volume rendering technique will be used. The fundamentals of this technique
is to slice each volume into a number of planes to which a texture is mapped. The volume rendering
techniques being analysed are volume rendering using planegeometry, volume rendering using 2D
texture stacks and shear warping. Additionally, shading methods will be analysed.

The method used in this project to represent a volume in 3D space, is volume rendering. Volume slicing
is a technique of volume rendering, which utilises simple plane geometry. The fundamental idea is
to place simple geometry perpendicular to the viewing angleinside the space in which the volume is
represented. Onto these planes a texture is applied, which represents how the volume would look if it
was sliced with the plane.

10.1 Volume rendering using plane geometry

The volume rendering technique allows rendering of complexshapes from image volumes, 3D bitmap
images. A number of semi-transparent textures sampled fromparallel planes in these volumes are
generated and mapped onto a series of parallel geometric planes, perpendicular to the viewing angle.

For each glyph in the system, there is an image volumespace, that is represented in the 3D space as a
number of planes limited within a bounding cube.

10.1.1 Generation of plane geometry

Source: [Madsen, 1997]
In order to generate the planes, the planes have to be mathematically represented. The mathematics in
this section is based upon the assumption that the centre of the volume is situated in(0, 0, 0) in the local
coordinate system of the object.

The equation for the plane is:

a(x − x0) + b(y − y0) + c(z − z0) + d = 0 (10.1)

x0, y0 andz0 are points on the plane, and are used to place the plane in 3D space. The normal to the
plane is given by:

~n =





a
b
c



 (10.2)

The normal is equivalent to the vector from the viewing angle. Based on these equations, a plane-
generator can be made. The centre plane of the volume is placed in (0, 0, 0). This simplifies the
equation for the centre plane to:
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ax + by + cz = 0 (10.3)

Since the planes are all being placed along the normal vector, the normal vector coordinates can all be
used to place the other planes. If the normal vector is scaledfor each placement of a plane, then the rest
of the planes can be generated using:

ax + by + cz − a2 − b2 − c2 = 0 (10.4)

If the normal vector to the plane is set to unit length, the scalar to the centre points of the additional
planes can be calculated using:

i ·
(

L

I − 1

)

· ~n (10.5)

whereI is the total number of planes,i is the current plane number andL is the length from the centre
to the edge of the bounding cube in the direction of the normalvector. The side-length of the bounding
cube is denoted asζ. L is calculated using standard Pythagoras:

L =
√

(m · a)2 + (m · b)2 + (m · c)2 (10.6)

where m is a scalar, that scales a, b and c to the length to the edge of the bounding cube:

m =
ζ

2 · l
with

l = max(a, b, c)

ExampleFor this example the side length of the bounding cubeζ = 10 and the total number of planes,
I = 10. The view point is set to(2, 1, 5). With the given viewpoint the plane is given by:

2x + y + 5z − 4 − 1 − 25 = 0

2x + y + 5z − 30 = 0

l = max(2, 1, 5) = 5 and thusm = 10
2·5 = 1. The length from the centre to the edge of the bounding

cube in the normal vectors direction,L, is:

L =
√

22 + 12 + 52 =
√

30

The normalised vector yeilds~n = ( 2√
30

, 1√
30

, 5√
30

)T , and thus for plane number 2 the scalar is

2 · (
√

30

10 − 1
)







2√
30
1√
30
5√
30






=





4
9

2
√

30
135
2
27





Inserting the new scalar into equation 10.1 yeilds:
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4

9
x +

2
√

30

135
y +

2

27
z − 764

3645
= 0

10.1.2 Quads or Polygons

When placing geometry in 3D space using OpenGL, there are several primitives that can be utilised,
such as triangles, quads and polygons, see appendix A on page100 for further details on these. Since the
textures for the planes have four corners, due to the use of the Cartesian coordinate system in images,
the triangle primitive will not be considered any further.

The quad primitive consists of four points, which eases the texture mapping, as the corners of the quad
matches the corners of the textured image. The placement of the quad inside the bounding cube, poses
a challenge if quads is used creating the planes.

The polygon primitive consists of as many points as the programmer decides, which makes it a very
flexible primitive. However, the fact that the number of points creating a plane can vary depending on
the planes angle, the texturing of the planes poses a challenge.

A waste of parts of the image that should be textured can not beavoided for neither quads nor polygons.

10.1.3 Fitting the planes to bounding cube using quads

For this project two simple approaches has been utilised to fit the planes to bounding cube using quads:
2D Cutting andCubic Plane Cutting. The size of the bounding cube, which denotes the limits for the
planes, isζxζxζ. Both methods are based on preliminary testing of creating quads from the bounding
cube.

2D Cutting

In this approach the largest component of the normal vector~n is found and the two remaining com-
ponents denotes a 2D plane. These two directions is where thevector spans the least, and the thesis
is that the plane will likely be oriented, in such a way that the 2D plane is the Cartesian plane that is
closest to the viewpoint. When the proper 2D view port has been found, the four 2D corner coordinates
of the bounding cube is applied to 10.1, and the result will befour 3D coordinates that make a plane
perpendicular to the viewing angle.
This approach makes the best planes, when one vector component is significantly larger than the other
two. When the three components are about the same size, the 2DCutting results in a skewed plane
because the cutting angle is far from the viewing angle, an example of this effect can be seen in fig-
ure 10.1 on the next page.

When several planes are generated the skewness problem becomes more apparent, as the most forward
and backward planes would have more geometry outside of the bounding cube, than inside, an example
of this can be seen in figure 10.2 on the following page. All planes in the figure are perpendicular to
the viewing angle. When the planes are texturized the parts that are outside of the bounding cube will
be invisible.

To solve the skewness problem, each plane could be checked for which corner points that was outside
the bounding cube. If two or more adjacent points are outsidethe space, the planes could be scaled in

53



CHAPTER 10. VOLUME RENDERING

Figure 10.1: (a) The plane viewed from cutting angle. (b) Screenshot of how the cutting angle affects the planes
to skew.

Figure 10.2: An example of how the skewness problem will, in its extreme, look. The green arrow is the vector
denoting the viewing angle, all planes are perpendicular tothe viewing angle.
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10.1. VOLUME RENDERING USING PLANE GEOMETRY

regard to the (or those) point(s) inside the bounding cube, until the planes size is exactly to the border
of the bounding cube.

Cubic Plane Cutting

The principle of Cubic Plane Cutting can be seen in figure 10.3. The bounding cube can be described
with six planes. If the plane generated from the viewing direction is checked for intersection with these
bounding planes, it will result in 6 lines. If the view is thenlimited to a 2D perspective, the generation
can be simplified. The 2D perspective is set to be from the axisof the smallest component of the
normal vector. That means if the normal vector has the components -20, 140 and 30 (see figure 10.3a)
then the 2D perspective will be from the x-axis, ie a yz-coordinate system(figure 10.3b). From the
2D perspective only two lines are interesting, those that cutted the plane that is viewed in the 2D
perspective. This means that if the 2D perspective is a yz-coordinate system, the usable lines are those
that intersected with the two x-planes (figure 10.3c and d). From the 2D perspective lines can be
drawn between the two intersection lines, and if they are drawn perpendicular to the intersection lines
(figure 10.3e), the resulting plane will be perpendicular tothe viewing angle and quadratic (figure 10.3f).

Figure 10.3: The principal of Cubic Plane Cutting. (a) A normal vector (b)with x as the smallest component
(c) results in an intersection on the x-planes of the cube, (d) and viewed from an YZ perspective, (e) where the
intersection lines are connected perpendicularly, and (f)a plane can be spanned from these lines.

10.1.4 Fitting the planes to bounding cube using polygons

If the planes within the volumes are placed using polygons, then no plane geometry will reach outside
the bounding cube. The planes will be strictly confined to thevoxelspace. The plane equation, see
equation 10.4, is utilised to place the planes. The edge coordinates of the bounding cube can be set in
both x, y and z to± ζ

2 , whereζ is the side length of the bounding cube. This means that all points for
the polygon describing a plane can calculated by applying these coordinates to the equation for each
plane within the bounding cube. If the resulting coordinateis outside the bounding cube, the coordinate
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will not be used in creation of the polygon.

The final step is to sort the coordinates that are within the bounding cube in the order, they should
be drawn. This can be done by viewing all the coordinates froma two dimensional perspective, and
determine the angle from the centre of the plane to each coordinate. These calculated angles can then
be sorted, and the right drawing order is thereby apparent.

10.2 Texturizing plane geometry

When considering the texturizing, one problem is how to slice through the volume, and get the right
representation of the slice. Another problem, when considering the generation of textures to the planes,
is how to make sure that no important perceptual informationis lost in the space between the planes
and how to deal with this potential loss. Furthermore, theseproblems must be evaluated in comparison
with the amount of time each method takes.

10.2.1 Coordinate transformation

The problem of finding a proper texture for an arbitrary planeexisting within the volume is to remap
3D coordinates into 2D coordinates. This may be solved by coordinate transformation. The principal
of coordinate transformation is to have one coordinate system and map it onto another.
In this project the planes are represented by four points in 3D space. An example of a plane may be
seen in figure 10.4.

Figure 10.4: A 3D plane represented by four coordinates.

The plane may be described with axes derived from the 3D points of the planes. Furthermore, the two
axes may be described by the vectors spanned from point p2 on figure 10.4 where:

~v1 = p1 − p2

~v2 = p3 − p2

This is done on the assumption that the plane is symmetrical on the line from p1 to p3. Vector~v1 and
~v2 can be seen in figure 10.5 on the next page.
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10.2. TEXTURIZING PLANE GEOMETRY

Figure 10.5: Vector~v1 and ~v2 derived from points p1,p2 and p3.

The texture has various resolutions, dependent on the requests of the system for that particular plane.
The horizontal (~v1) resolution is equivalent to the vertical (~v2), and is denoteds. The half unit length
of the vector is calculated in equation 10.8 and equation 10.8. The half unit length is used in order to
address the center of the pixel.

~vx =
~v1

2 · s (10.7)

~vy =
~v2

2 · s (10.8)

The 3D position of the voxels within the volume, which map thex andy position in the texture may be
found using~vx and ~vy. If the vertical pixel position on the texture is denoted byx, and the horizontal
is denoted byy, then the 3D positionp of any pixel on a texture described by the four points may be
found with:

p(x, y) = (2 · x − 1) · ~vx + (2 · y − 1) · ~vy + p2 (10.9)

Example:

In this example the resolution of the texture is10× 10, see figure 10.6 on the following page, therefore
s is 10. ~v1 and ~v2 are scaled down to~vx and ~vy as seen in the figure. To find the pixel at(4, 7) the
vectorp(4, 7) is calculated using(2 · 4 − 1) · ~vx + (2 · 7 − 1) · ~vy + p2.

With the 3D position for the pixel, the value is the same as thevoxel in the volume describing the space.

Another problem is how to make sure that the voxels between the slices are represented on the texture.
The representation is needed if there are voxels in the spacebetween the slices, which holds vital
perceptual information. In that case the voxels, which are between two slices, must be projected on the
texture for representation. The angle of the projection must be equivalent to the viewing angle to create
the proper effect. For this the normal vector may be utilised, as it describes the vector from the plane
to the users point of view. If the normal vector is scaled to unit length, all voxels between the point on
the plane and the point of view may be found by varying a scalarmultiplied to the normalised normal
vector. If k denotes the scalar and~n is the normalised normal vector, then the voxelq may be found
with:
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Figure 10.6: Vector~vx, ~vy and the vector to the point x=4 and y=7.

q = k · ~n (10.10)

This scalar may be used to find all voxels in front and behind ofeach plane, and may therefore be used
to project these onto the texture plane.

10.2.2 OpenGL 3D texture slicing

Source: [Shreiner et al., 2003]
OpenGL extensions allows hardware accelerated texture slicing. This means that all the calculations
for slicing the textures will be maintained by the hardware graphics accelerator. This method eases the
texture generation to merely telling the hardware points oneach plane-geometry and their corresponding
points within the voxelspace.

This method is the obvious texture-method, when using polygon slices to represent the volume.

This method is by far the fastest, most effective and easiest. While it is the advantage of the method
that the slicing is done within the graphics accelerator, itis at the same time the disadvantage. It is a
disadvantage because it is hardware accelerated. When the slicing is hardware accelerated it means that
all of the slicing of volumes can only take place on one machine, the machine that draws the graphics
for the visualisation. This means that the volume slicing calculations can not be distributed to multiple
machines. At the same time in a system that needs to slice multiple volumes, the load on the one
machine will be great. At the same time the demands to the memory on the one machine will be very
great, as it needs to store all the volumes it is supposed to slice.

10.2.3 Volume rendering using 2D texture stacks

Source: [Rezk-Salama et al., 2000]
The simplest form of volume visualisation utilises only 2D texture mapping which is supported by even
the simplest graphics hardware.

To render the volume, the volume is stored as a stack of slices. Three stacks of slices are stored for each
volume. Each stack is perpendicular to one the three major axes, and the stack that is most perpendicular
to the viewing direction is always chosen as the displayed stack.
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Then each slice is rendered back to front.

This method requires only basic OpenGL functionality with no extensions. The principal is illustrated
in figure 10.7 with only 9 planes, as it can be seen the hourglass is visible in the volume, even though the
viewing direction is far from the planes normal direction. Normally a volume made with this method
would be represented with more planes than in the figure, making the gaps between the slices almost
invisible.

Figure 10.7: The 2D textures Volume rendering method applied with only 9 planes, but still the volume is repre-
sented.

There are a number of weaknesses with this simple approach. First, three sets of slices needs to be
stored. Secondly, the quality of the image depends on viewing angle. Finally, there is a slight visual
pop whenever the viewing direction changes.

The advantage of this method, is that it requires no calculations every time the perspective changes, all
necessary calculations are done in advance.

10.2.4 Volume rendering using Shear Warping

Source: [Lacroute and Levoy, 1993]
The general concept of shear warping is a transformation from an object space to a shear object space
for a parallel projection. This is done by translating each slice. From the shear object space each
voxel slice can be projected into an image simply and efficiently. There are several types of Shear
Warp Factorisation methods. The one described in this section is the Affine Factorisation method, see
appendix D on page 114 for further details, which includes four transformations: From object coor-
dinates to standard object coordinates, from standard object coordinates to sheared object coordinates,
and finally from sheared object coordinates to image coordinates, see figure 10.8 on the following page.

The factorisation of an affine viewing transformation matrix includes a 3D shear, a 2D warp, and a
conversion:

Mview = Mwarp · MshearP

The permutation (conversion) matrix,P is derived from the principal viewing axis and is used to calcu-
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Figure 10.8: The four different coordinate systems used in the derivation of the Affine Factorisation method.
Source: [Lacroute and Levoy, 1993]

late the transformation from object coordinates to standard object coordinates. The principal axis is the
axis in object space which forms the smallest angle with the viewing direction vector. The transforma-
tion from standard object space into image space is made using P andMview. In order to calculate the
shear matrixMshear and the warp matrixMwarp, the shear coefficients have to be calculated. The shear
necessary in thei direction is the negative of the slope,vso,i/vso,k (see figure 10.9), of the projection of
the direction vector onto the(i, k) plane. This also holds for thej direction.

Figure 10.9: The cross-section of the volume and the viewingdirection in standard object space. In or-
der to transform the volume to sheared object space the volume must be sheared in thei direction. Source:
[Lacroute and Levoy, 1993]

When this transformation from standard object coordinatesto sheared object coordinates, the result
is a coordinate system where the origin is not located at the top-left corner of the image and thus a
translation of the sheared coordinate system is necessary.The four cases of translation is shown in
figure 10.10 on the facing page

10.3 Shading

An important aspect of rendering shapes in 3D, is the shading. This applies to volume rendering as
well, as the shading is one of the factors that gives objects the effect of appearing in three dimensions.
The effect can be seen in figure 10.11 on the next page

The next sections explores ways to apply a shading to a rendered volume. All methods will be used
upon the assumption that the light source that shades the volumes is emitting from the user, as if the
user in the virtual world is carrying a flashlight.
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Figure 10.10: The four cases of translation the sheared coordinate system. The translation (ti, tj) specifies
the displacement from the origin of the standard object coordinate system (i = 0, j = 0) to the origin of the
intermediate image coordinate system (u = 0, v = 0). kmax is the maximum voxel slice index in the volume.
Source: [Lacroute and Levoy, 1993]

Figure 10.11: The effect shading has on the 3D effect of an object
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10.3.1 Plane Depth Grading

This method applies to volume rendering methods using planes to visualise the volume. The approach is
very simple, since the light that shades the volume is emitting from the same point as the point of view,
the planes nearest to the user must be lighter than the planesfarthest away within the volume. With this
in mind the concept is to gradually decrease the intensity ofthe planes as a programme creates them.
This method is based on preliminary tests with making a shading for the volume slicing.
Mathematically plane depth grading is utilising:

s =
n

N
(10.11)

Wheren is the current plane the programme is processing for the current glyph,N is the total number
of planes that should be processed for the current glyph, while s is the shading value that should be
multiplied to each colour value on each pixel on each plane. Thes value is ranging between 1 and 0.
A result with testing this method can be seen in figure 10.12.

Figure 10.12: An hourglass glyph shaded with Plane Depth Grading.

The weakness of this approach is that it is not a real shading,based upon the curvature of the object. It
only helps the user to perceive the depth of the object. Another weakness is that if the number of planes
in a volume is low, the intensity difference between the planes can reveal to the viewer that it is merely
a row of planes that is visualised, and not a solid object. Theadvantage of the method is that it is easy,
and fast.

10.3.2 Lamberts Reflection Model

Source:[Slater et al., 2001]
One way to create shading upon the surface of a rendered volume, would be by applying Lambert’s
shading model to the surface calculations of the volume. Themodel has no base in real-life shading,
as it is not synthesised. The model is a simple way to calculate shading of surfaces. Only the most
significant affecting lights are taken into calculation of each point, because the peripheral light sources
seldom has very large effects on the result. The purpose is not to give a realistic shading of the glyphs,
but a shading, that enhances the perception of the shapes of the glyphs. Lamberts shading model can
be seen in more details in Appendix E.

First the normal vector of each edge voxel is needed to calculate the shading. This can be found by
searching the 26 connected neighbourhood of each edge voxel. The 26 connected neighbourhood can
be seen in figure 10.13 on the next page.
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Figure 10.13: The 26 connected neighbourhood.

In the neighbourhood a direction vector is made for each neighbouring voxel that is "free" space, and
not solid space. These vectors point in the direction of the free voxels and are all set to unit length.
When all vectors has been made, they are all added together, and the resulting vector is the normal
vector for the edge voxel, a 2D example of this may be seen in figure 10.14.

Figure 10.14: 2D example of how vectors to the free voxels, when added together, gives a normal vector for an
edge voxel.

The resulting normal vector may be calculated with:

~vT =
n−1
∑

k=0

~vk (10.12)

The shading of each voxel, may be divided into 3 categories, diffuse, specular and ambient reflection.
Diffuse reflection is the direct illumination of a surface, which makes the surface visible.
Specular reflection controls how the surface shines on surfaces with direct light.
Ambient controls the illumination of surfaces not affectedby light.

Diffuse reflection

When the normal vector and the viewing angle is known, the following calculation can be made to find
the diffuse value of the edge voxel:

Id = kd · Ii · (~n • ~Li) (10.13)
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Figure 10.15: The diffuse part of the lambert shading model

Where:
Id: The resulting intensity value for each edge voxel.
kd: Diffuse Reflection coefficient. One for each colour channel.
Ii: Intensity of the incoming light.
D: The angle between the normal vector and the incoming lightvector.
~n: The normal vector to the surface.
~Li: The vector for the incoming light.
~V : The viewing vector.
All values are normalised to values between 1 and 0. Equation10.13 on the page before can be simpli-
fied, as there are certain limitations to the shading. Because the light is emitting from the same place as
the viewing angle,~V and ~Li is the same. The intensity of the incoming lightIi can be set to a constant
value of 1. Thekd factor is representing the colours of the voxel, that meanskd is each colour channel
represented as a normalised value between 1 and 0;
Hence the diffuse reflection can be reduced to:

Id,c = ~n • ~V (10.14)

WhereIdc
in equation 10.14 is afterwards multiplied with each colourchannel, c denoting colour chan-

nel.

Specular reflection

To find the specular reflection
Is = ks · Ii · (n • (~V + ~Li))

m (10.15)

ks: Specular Reflection Coefficient.

Figure 10.16: The specular part of the lambert shading model

Ii: Intensity of the incoming light.
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S: The angle between the perfect reflection angle and the viewing angle.
m: Shininess-factor. Ranging from 1 and to values above, thehigher the value, the more concentrated
the specular reflection will be.
~Li: The angle for the incoming light.
~H: The angle between the viewing angle and the incoming light angle. ~H = ~V + ~Li

~R: The perfect light reflection angle.

This calculation applies to all colour channels. As with thediffuse, the specular reflection equation
10.15 may be reduced, by setting the incoming light intensity Ii to 1, whileks will be set to 1. Since
the light emits from the same place as the users point of view,the addition of~V and ~Li is irrelevant as
they are equal. Hence the specular reflection may be reduced to:

Is = (~n • ~V )m (10.16)

As equation 10.16 bears resemblance to 10.14 this can be utilised to modifying the specular reflection
to:

Is = Im
d,c (10.17)

Ambient Reflection

Ambient reflection is the simplest of the three, as it does notincorporate angle calculations. Ambient is
the light that affects all points.
The ambient reflectionIa may be calculated with:

Ia = ka · Ib (10.18)

ka: Ambient Reflection coefficient
Ib: Ambient Light intensity

These calculations can be omitted by settingIa to a constant, like 0.3, which means that surfaces on
objects that are not affected by the light, will be 30 %.

Total reflection

The three reflection types can be summed to calculate the total reflection:

I = Ia + Id + Is (10.19)

Which can be written as:

I = 0.3 + ~n • ~V + (~n • ~V )m (10.20)

65



CHAPTER 10. VOLUME RENDERING

Discussion

Based on the analysis of volume rendering it is decided that volume slicing based on simple plane
geometry will be utilised in the system. This is done by usingthe OpenGL primtive quads as it consists
of four points and thus matches the corners of the textured image. In order to cut quads out of the
planes a 2D cutting method will be used. For navigation the volume rendering technique using 2D
texture stacks is utilised, as they do not require calculations of each volume during movement of the
view point.

Furthermore, it is decided that in order to find a proper texture for an arbitrary plane the 3D volumes
have to be transformed into 2D textures using coordinate transformation, as this process can be dis-
tributed, whereas the OpenGL 3D texture slicing can not.

It is decided that the Plane Depth Grading method is to be used. The advantage of the method is that
it does not require much processing time. Lamberts Reflection Model needs to project and shade all
edge voxels in a volume onto the slices, to have the right effect of the glyph in 3D space. In relation
to Plane Depth Grading the Lamberts Reflection Model requires more processing time and is therefore
not chosen.

66



CHAPTER 11
Performance

Using a volume rendering technique for visualising objectsdemands much CPU processing time due
to the fact that each texture has to be re-calculated when theview point is changing. Therefore various
methods for reducing the utilisation of memory are analysed.

To exemplify the need for compression, assume that the dimensions of a given voxelspace are256 ×
256 × 256, and thus the resulting size of each voxelspace is:

256 · 256 · 256 · 32
1024 · 1024 · 8 = 64MB

For instance if there are 1000 objects, each with a unique voxelspace attached, the amount of memory
consumed by voxelspaces is 62,5 GB, with 500,000 objects theresulting size is 30,5 TB uncompressed.
Therefore, figure 7.2 on page 39 is expanded by a compression before storage and a decompression just
before the geometry and texture calculations are performed. The new diagram is shown in figure 11.1.

Data

Generate


volumes
 Volumes

Render


volumes

Draw


Navigate
UI


Compression
 Decompression


Figure 11.1: The overall flow diagram of the programme expanded with compression and decompression.

In the following sections a case of 1000 objects each with a voxelspace dimension of256 × 256 × 256
will be utilised to exemplify the memory usage with the various methods.

11.1 General compression methods

A compression of the glyphs is necessary as long as each glyphis projected to take up 64 MB, because
the storage of all the glyphs would take up more memory than what is likely available. Several methods
may be used for compression such as Joint Picture Expert Group (JPEG) and Portable Network Graphics
(PNG). In appendix F on page 124 a more detailed description of the compression methods can be
found.

11.1.1 JPEG compression

Source: [Y.Q.Shi and Sun, 2000]
The images is partitioned into8 × 8 blocks. On each block a forward Discrete Cosine Transformation
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(DCT) is applied, and the resulting coefficients are scannedthrough a zig zag pattern in order to main-
tain redundancy. The blocks are then converted into chrominance and luminance effects, which are
used in the quantisation process of the image. Based on the quantisation tables for the chrominance and
luminance and the DCT coefficients each block is compressed into a bit-stream. The compression ratio
for JPEG is 20. The JPEG compression is a lossy compression method. See appendix F on page 124
for further description and testing of the JPEG compressionmethod.

11.1.2 PNG compression

Source: [W3C, 1996]
On glyph-like images the PNG8 compression have a compression ratio of 1:54, which brings the size
of each glyph down to 1.18 Mb. This estimate is made on the presumption that each slice of the
voxelspace is compressed separately. If the PNG-compression was modified to compressing in the
three dimensions instead of two, it is possible that the compression ratio can be improved considerably.
The PNG compression is a lossless compression method. See appendix F on page 124 for further
description and testing of the PNG compression method.

11.2 Voxelspace reduction

There is an alternative to saving all the images in a voxelspace. Instead of using a standard compression
on all the images in the voxelspace, it could save a significantly amount of memory to reduce the image
to the minimum amount of information. This may be done by reducing the volume of each image and
by reducing the amount of colours representing each glyph. In the case of the three test glyphs described
in chapter?? on page ??, the symmetry of the shapes can be utilised to reduce the voxelspace.

11.2.1 Reduction of volume

If the middle slice of all the voxelspaces is made, this imagecontains all the information needed to
recreate the rest of the voxelspace. The fact that the slice is symmetrical means that the image can
be cut to only contain one of the symmetrical parts. This means that the rest of the 255 slices can be
recreated from this basic slice. The cross glyph can be recreated with the slice seen in figure 11.2.

Figure 11.2: The basic slice that can recreate the cross glyph voxelspace

The diamond glyph can be recreated by rotating the slice seenin figure 11.3.

Figure 11.3: The basic slice that can recreate the diamond glyph voxelspace

68



11.2. VOXELSPACE REDUCTION

Figure 11.4: The basic slice that can recreate the hourglassglyph voxelspace

The hourglass glyph can be recreated by rotating the slice seen in figure 11.4.

The reduction of data to a basic slice, requires massive calculations in order to be recreated. This can
be solved by using a lookup-table for the remapping, where all the voxels points to which pixel in the
original image, they are a copy of.

The following example shows how much a volume may be compressed using voxelspace reduction:
ExampleThe resolution of the basic slice of the hourglass is128x256, whereas the original size of the
voxelspace is256x256x256. This is a reduction of size by:

256 · 256 · 256
128 · 256 = 512 (11.1)

The voxelspace, which uncompressed takes up 64 MB, may be described with:

64 · 1024
512

= 128kB (11.2)

If a 1000 objects are needed for the system, these take up 125 Mb in total, and the images are still
compressible. The cross glyphs and diamond glyphs will onlytake up half the space of the hourglass.

11.2.2 Reduction of colour

The volume of the image is not the only thing that can be reduced. The use of different colours in the
voxelspace, is another area where the data size may be reduced by extracting the information. Originally
the glyphs contain 32 bit colours, but if the number of different colours is counted, only five different
colours are used throughout the basic hourglass image. The cross glyph and the diamond glyph only
uses two different colours. If the number of different colours is used as the bit length used to describe
them, three bits are enough to describe the five different colours used in the hourglass glyph. The
RGB-value of these five colours differ from glyph to glyph, depending on the features used to describe
the glyph, therefore a look-up table for the colours is needed for each glyph. If the colour reduction
is applied to the hourglass glyph the reduction ratio is:32/3 = 10.667. This means that a hourglass
glyph may be described using128/10.667 = 12kB. With this reduction the total amount of space used
to store 1000 hourglass glyphs is approximately 12 MB. In comparison with the original voxelspace,
the compression/reduction ratio using colour reduction onthe basic image is:512 · 10.667 = 5461.

11.2.3 Run length

Source: [Salomon, 2000]
The basic image has large redundant areas, this fact can be used to further reduce the space each image
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takes up. If the pixels are described asstart−pixel, colour, andend−pixel, instead of the traditional
one pixel, one colour structure, huge amounts of data may be saved, as there are many pixels after each
other, that have the same colour. This method is called run length encoding and is a powerful way of
compressing redundant data.

11.3 Scaling of planes

When several planes are generated, the skewness problem becomes more apparent, as the most forward
and backward planes have more geometry outside of the bounding cube than inside. To solve this
problem, each plane can be scaled to fit the bounding cube.

11.4 Distance based detail reduction

Another way to utilise the memory is to vary the number of planes for each glyph in regard to the
viewing distance. The glyphs that gain the best 3D-effect, are those closest to the point of view, while
the glyphs far away gain less by having only a few planes representing them. This way the rendering
time is decreased. Additionally, the texture resolution may be degraded, as the distance increases, due
to the fact that the representation of textures, far from theview point, is difficult to see.

11.5 Reuse of glyph templates

In order to generate the glyphs, calculations have to be performed for each glyph. If instead templates
are created for each glyph with certain intervals, calculations can be minimised. The generation of
templates is based on the assumption that the human eye is notable to observe small differences in the
dimension values from the data set, which is normalised and lies between 0.0 and 1.0. An example is
for the sand element in the hourglass. If the value of the dimension in the data set is 0.1 for one glyph
and 0.2 for another glyph, it is difficult to see the sand actually represents two different values. When
the observer can not see the difference on the sand element, it is easier to have a glyph representing a
larger interval as for instance from 0.0 to 0.2. In that way only five glyphs have to be made and saved
in memory as templates, as they may be reused.

Discussion

Based on the analysis of compression it can be concluded thatthe PNG compression method is the
only one of the described compression methods, which is lossless. Based on tests it can be concluded
that lossless compression is preferable for this system. Onglyph images the PNG8 compression ratio is
good in compared to the other compression methods, however acompression ratio of 64 is not sufficient
if 500,000 objects are to be represented in the system. The usage of voxelspace reduction is a far more
efficient method of compression, due to the fact that each volume is reduced to one 2D image. The
method will be used in this system. Furthermore, a reductionof the colours on the 2D image, scaling
of the planes, and distance based detail reduction are utilised.



Part IV

Design
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Introduction

The system is designed with three main elements. These elements are the Volume Manager handling
volumes, the Glyph Manager handling glyphs, and The Volume Slicer handling the translation of vol-
umes to glyphs. A diagram describing the interaction between these elements can be seen in figure
11.5.

Volume Manager

Volume
Volume
Volume
Volume
Volume

Glyph Manager

Glyph

Glyph

Glyph

Glyph

Glyph

Rendering routine
NavigationGraphical User Interface

Volume Slicer

Figure 11.5: A diagram, describing the main elements of the system.

In the following sections a further description of the threemain elements will be given.

Volumes

Volumes are the basic data structures where the volumetric data are stored. The system is designed with
the ability to store all sorts of image data in these volumes.

When the system is initialised a volume, representing each object to be displayed in the scene will
be generated. This means that a large number of objects will demand large amounts of physical data
storage. To limit the amount of physical data storage required, each volume type can incorporate a
custom compression algorithm, specially designed to minimize that type of volume.

All volumes are managed by a volume manager, that maintains alist of all volumes, with a unique ID.
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Glyphs

Glyphs are the abstractions used in the system to describe a renderable element. The glyph is, in the
same way as the volume, a data structure containing two main elements namely the textures to be
rendered, and the coordinates of the corresponding geometry, on which to place the texture.

All glyphs in a scene is managed by a glyph manager, which maintains at list of glyphs, updating these
from the volume they are linked to, when the user requires it.

11.5.1 Overall structure of the system

The overall structure of the system starts with a user choosing a glyph object. The data dimensions are
mapped, by the user, to the various features of the object. The first time a user runs the visualisation,
the Volume Manager generates all objects as volumes, from the data records. The Glyph Manager
utilises the Volume Slicer to generate navigation glyphs and the high density glyphs, which are stored
in glyph objects maintained by the Glyph Manager. The Rendering Routine starts drawing the sliced
high density glyphs. From here the user can swich to navigation mode, which enables navigation for
the user. When the user has navigated to a new point of view, where a high density view ofthe glyphs
is desirable, the user commands the system to reslice. The Glyph Manager then utilises the Volume
Slicer to generate new high density glyphs from the new pointof view. The user has the oppportunity
to re-enter the mapping GUI and remap the features or choose anew glyph.
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CHAPTER 12
System overview

This chapter describes the functionality of the designed system, in terms of volume, volume slicer, glyph,
and graphical user interface.

12.1 Functionality of the system

The object types utilised in the current system are the Hourglass, Diamond, and the Cross glyphs. A
further description of these can be found in chapter 9.

Input to the system is a data set clamped between 0-1 from a given database. From the input data, visual
objects, of one of the three object types, are generated according to the input from the graphical user
interface and stored as volumes. When entering the 3D space in the system, all volumes are converted
into glyphs by means of volume slicing.

Volume slicing entails generating a series of planes orthogonal to the viewing direction. This mean that
when navigating the 3D world, new calculations will have to be made for each different viewing point.
This procedure requires heavy CPU processing, and therefore a series of presliced glyphs are shown
when navigating. Each glyph has three stacks of slices alongthe three global axes. When navigating,
one of these is shown, depending on which axis has the largestdistance component to the glyph.

A detailed class diagram can be seen in appendix I on page 139.

12.2 Rendering routine

The main rendering routine is the main element, to which all other system part are in some way con-
nected, see figure 11.5. During the initialisation phase, a volume manager and a glyph manager will be
created. After this, the GUI is started. Based on the choicesmade by the user in the GUI, the volume
manager and glyph manager will be notified.

12.3 Volume manager

The volume manager is where all volumes are maintained. Thisincludes, generation and removal of
volumes. To create volumes, the volume manager is notified bythe main rendering routine, when the
user has prompted the GUI to start a visualisation. Notification includes information of the number
of where input data is located, the number of volumes to create and the volume type is passed to the
volume manager. Figure 12.1 is a class diagram of the system part, handling volumes.
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Hourglass

Volume

Diamond Cross

VolumeManager

1 *

Figure 12.1: A class diagram of the system part handling volumes.

12.3.1 Superclass Volume

The volume is an abstract superclass for the different typesof volumes that may be added to the system.
Subordinate to the volume class is the different volume-classes, that are used to create the volumes.
To function within the system, a volume class must be structured in a specific way, which ensures
compatibility. The three test objects, Hourglass, Cross, and Diamond, described in the analysis in
chapter 9 on page 47, these are similar in structure, and therefore a general structure will be described.

Setting the data

Creates objects, from normalised data input, as volumes in the system. Based on a list of data and an
indication of the desired resolution the glyph is created invoxelspace. The different steps are shown in
figure 12.2, where the example is the hourglass volume type. The steps are: the creation of the object,
the colour reduction, the compression.

setData()


The shape of the


hourglass is


calculated


The colours for


sand, glass, head


and foot is set


The volume is


compressed


Figure 12.2: The data flow of the method to set the data.

Generation of a look-up table

Some of the volume types require a look-up table with premadecalculations, which are utilised for a fast
decompression. This allows the data to be decompressed muchfaster, as the decompression requires
less calculations.

Reading the data

The volume is saved internally in the volume object, therefore a general method is needed to read the
content of the volume from outside. This method receives a 3Dcoordinate, and recalculates which
voxel the coordinate is similar to. The volume is decompressed using a look-up table, the voxel is
found, recoloured and returned to the external function which requested the voxel. An example of this
method is shown in figure 12.3 on the following page where the hourglass type is used.
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getVoxelColor()


Transformation


from 3D-
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The volume is


decompressed
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of sand, glass,


head or foot


Returns colour


Figure 12.3: The data flow of the method to get the voxel colour.

12.4 Glyph manager

When volumes have been created, the glyph manager will be able to create the elements to render in the
3D scene. To create glyphs, the glyphmanager is initially informed of how many glyphs to create, and
which volume each glyph refers to. In this way, the number of glyphs in the scene is not dependent on
the number of volumes created. This enables the system to visualise a large number of objects, from a
fixed number of template objects.

When initialisation is completed, the glyph manager will benotified when the user changes view point
in the system. This requires a reslicing of all glyphs.

To enable a correct back-to-front compositing of all glyphs, the glyph manager will keep track of the
rendering order of all glyphs, based on the distance from theview point.

To ensure performance, the system will make use of a distancebased degradation scheme for each
glyph. This entails reducing the resolution of each glyph based on distance from the view point, and
thereby reducing the volume slicing time.

Figure 12.4 is a class diagram of the system part, handling glyphs.

GlyphGlyphManager

1 *

Texture Plane

1* 1 *

Figure 12.4: A class diagram of the system part handling glyphs.

12.5 Volume Slicing

The purpose of the volume slicing part of the system is to "convert" a volume into a glyph using plane
slicing. The volumes are assigned to the slicer by the Glyph manager, which also allocates where the
resulting glyphs should be stored. The main argument, the Slicer receives, needed in order to create a
sliced glyph, is a normal vector to the planes within the glyph. This vector is the vector from the centre
of the glyph to the view point, and thus, because the vector isutilised as normal vector to the planes,
these will be perpendicular to the viewing direction, when sliced.
There are two stages to the creation of a glyph from a volume, quad creation and Texture creation.
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12.5.1 Quad creation

The quad creation utilises the mathematics for generation of plane geometry, described in chapter 10 on
page 51, to calculate the planes from the assigned normal vector. These planes are cut as quads to fit
the OpenGL primitive. The cutting of the quads is done from a 2D perspective, chosen from which
normal vector component is the largest. Furthermore, the slicer calculates how much of each quad that
is contained in the bounding cube and makes a scaling of each slice according to the calculation if parts
of the slice are outside the cube. The bounding cube is what limits where the voxels in the volume are
situated in 3D space.

When a quad has been created using the 2D perspective cutting, the quad is then evaluated, in regards
to how much of it is contained within the bounding cube. Depending on the result of the evaluation the
quad will be scaled down in order to make the quad fit best to thebounding cube.

12.5.2 Texture creation

The texture creation stage is the CPU-intensive stage of thetwo. The method of creating the textures
is the coordinate transformation described in section 10.2on page 56. The method uses the quad-
coordinates from the quad creation stage to create the textures. The coordinates are used to create
vectors that is used to calculate the different 3D positionswhere to read a voxel colour for the texture.
The volume is accessed to get the voxel colour for the found 3Dposition, the volume is accessed as
though the voxel should be read at the exact 3D position calculated, while the conversion into the
volumes voxel coordinates and decompression of the volume is handled internally in the volume. This
is done in order to make sure that all volumes, cross hourglass or diamond, can be accessed the same
way by the rest of the system, ensuring a flexible system, thatcan handle all volumes.

When the Texture creation has gone through finding the voxelsthat should be mapped to all pixels on
the textures, the volume slicer writes the calculated quad coordinates and textures into the area allocated
by the Glyph Manager.

12.6 Graphical User Interface

According to the external user interface requirements in section 7 on page 41 defined in the specification
of requirements in chapter 7 on page 38, the functional requirements, the GUI can be specified in four
main functionalities:

Object: User is prompted to choose between various record visualisation objects.

Feature mapping: User is prompted to choose which data dimensions are mapped to object features.

Number of records: User is prompted to choose the number of records to be visualised.

Mouse clicks: The system has to be able to detect mouse clicks on objects within the 3D window.

Before choosing which glyph that is to represent the data set, the data set has to be chosen from a given
database. The user then chooses which glyph that is to represent the data. In this system there are three
test glyphs available: Hourglass, diamond, and cross. Whenthe glyph has been chosen, the user has
to choose which data dimensions are to be mapped to which object features. For each mapping of the
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data dimensions, the configuration is shown on the interface. In this way the system becomes more
flexible because of the options available for the user on the GUI in contrast to a glyph with predefined
features. A predefined glyph can be a problem in some cases, because it might not emphasise what the
users intentions are for the given data set. Finally, the user has to choose the number of records to be
visualised.

Based on the functional requirements a rough sketch of the GUI can be designed, see figure 12.5,
cotaining five panels of buttons reflecting the functional requirements. These are data, features, glyphs,
preferences and run visualisation. The glyph, which has been chosen and the data dimensions mapped
to the various features, is displayed on the GUI. The rotation, moving, and zooming of the glyph is
possible.

The user should at all times be able to switch back and forth between the visualisation of the glyphs
and the GUI, to view the perception of the glyph in 3D space. Ifthe user is not pleased, it is possible to
return to the previous visualisation again.

Figure 12.5: A rough sketch of the GUI for the system.

12.6.1 Buttons

The user interface consists only of buttons. These buttons are grouped in panels, and each button in a
panel can be assigned an individual function.

The buttons are grouped in Data-buttons, Feature-buttons,Glyph-buttons, a Preferences-button and a
Run-button. All buttons are activated using mouse clicks.

Data-buttons

The data-buttons are representing the different dimensions in a data set loaded for the programme. Each
dimension is given a button in the panel. The data panel may beseen in figure 12.5 as the leftmost group
of buttons. The content and number of buttons in the data panel is changed for each data set loaded.
Furthermore, the colour of the buttons change when activated.
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Feature-buttons

The Feature-buttons represent each feature that may be mapped to a glyph. The content and number of
the buttons changes for every different glyph that is chosen. When the user left-clicks a Feature-button,
the data dimension last chosen by the user is mapped to the glyph feature that the button represents.
In the GUI this connection is marked by drawing a line from theData- to the Feature-button. To
undo the mapping to a feature, the user right-clicks the Feature-button, and the mapping is removed.
In figure 12.5 on the preceding page the Feature-buttons are in the second column from the left, and
the data to object-feature-relations are marked with linesfrom Data-buttons to the Feature-buttons.
Furthermore, the colour of the buttons change when activated.

Glyph-buttons

The Glyph-buttons represent the different glyph types thathas been added to the system. There is one
button per glyph, and the user may, at any time, switch from one glyph to another, and the glyphs in the
visualisation will change accordingly. When the user clicks a Glyph-button the Feature-buttons change
to the setup in the newly chosen glyph, and the previous mappings are reset. Furthermore, the colour
of the buttons change when activated.

Preferences-button

This button allows the user to change attributes in the visualisation. The current version of the system
only allows the user to change the number of records to be visualised within the visualisation scene, but
other features like the change of various ratios may also be fitted within the preferences category.

Run-button

The Run-button resets all glyphs completely, if they have been initialised earlier, and maps the features,
indicated by the data-feature relations set by the user, to the glyphs. The new scene is initialised with
the glyph type chosen by the user. Furthermore, the Run-button has a strong colour and is larger than
the other buttons, as it is essential for the functionality of the system.

12.6.2 3D space

Another part of the graphical user interface is the 3D space in which the glyphs are visualised. In order
to get some aspect in the scene a white grid, encapsulated by the xy, xz, and yz -planes, has to be placed
on a black background. Furthermore, the placement of axes, x, y, and z, in the scene, helps the user to
keep the orientation.



CHAPTER 12. SYSTEM OVERVIEW

80



Part V

Implementation

81



CHAPTER 13
Implementation

This chapter describes the differences between the designed system and the implemented system. Fur-
thermore, the status of the implemented system is described.

13.1 System Integration

The system has by the end of the project been implemented withall basic functionalities. The system
is able to map records from a data set onto the features of the three test glyphs. The system is able
to display all feature mapped glyphs inside a 3D scatterplot, and can handle a re-mapping of the fea-
tures. Furthermore, the system is able switch into a navigation mode, which allows the user to navigate
through the system in low detail, but with a high frame rate.

13.2 Functionalities not implemented

The overall functionality of the system has been implemented. However, certain functionalities de-
scribed in the design have not been used in the system, due to reasons listed below.

13.2.1 Distance based detail reduction and scaling

If the distance based detail reduction utilised when rendering high definition glyphs, the memory usage
for the textures is decreased, and thus the frame rate is increased. This is also apparent in scaling of
planes.
The distance based detail reduction and scaling has been assigned a lower priority, due to the fact, that
it is only used, when rendering high definition glyphs. In high definition mode there are no specific
requirements to the animation frame rate, only when navigating. The advantage of these methods is
that the slicing time is increased, due to the fact that the resolution on certain textures is decreased. The
scaling method has been implemented, but is currently deactivated, as the debugging of the method has
been assigned a lower priority.

13.2.2 Projection and shading

The projection of the voxels lying between the slices onto the textures has been implemented, but
deactivated. The projection proved to be a CPU heavy operation, which would result in a long slicing
time for a scene, when processed on a single computer. This entails that if projection is to be utilised in
the system, the calculation process, would need to be distributed.
The lack of projection means that the Lambert’s Reflection Model can not be implemented, as this
requires all edge voxels to be projected onto the textures for right representation of the shading. As a
compensation for the Lambert shading, the Plane Depth Grading has been implemented.
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13.2.3 Reuse of glyph templates

The main reason of implementing the method is to reduce the use of memory. Voxelspace reduction
has proven to reduce the memory usage for each volume effectively in the system. Therefore the reuse
of glyph templates is assigned low priority and has not been implemented.

13.2.4 Graphical User Interface

The five panels, data, features, glyphs, preferences, and run visualisation has been implemented in the
GUI. The screenshot of the GUI is shown in figure 13.1. However, the glyph, which should display the
data dimensions mapped to various features, is not shown. Furthermore, switching between 3D space
and GUI, to view the perception of the glyph, has not been implemented.

Figure 13.1: The screenshot of the GUI.

13.3 Considerations

This section describes the experiences gained through the implementation of the system.

13.3.1 Detecting mouse clicks using raycasting

The GUI is visualised in 3D, and therefore, normal functionalities such as when a mouse clicks upon
a button is not automatically implemented, as the object arenow in 3D space. Therefore the mouse
clicks on the buttons must be detected, by casting a ray from the users view and find the ray that is cast
from the camera to the image plane, a line in 3D space is made. By checking the line for intersections
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with the geometry in the scene, it may be determined which object the user clicked upon. Thereby the
mouse clicking on 3D buttons may be detected.

13.3.2 Shading during navigation

When a user navigates through the 3D space, the glyphs are shown as 2D stacks for each major axis.
A glyph is always shaded from the cutting angle, which means that when the stacks change from one
major axis to another, the lighting of the glyph change rapidly. Therefore the navigation slices are made
without shading.

13.3.3 Thickness of the glass

In the analysis the hourglass glyph is described to have glass containing the sand. Through the imple-
mentation of the system, the glass has proved to be distracting and without any perceptual information.
Therefore the hourglass has been modified to a glass thickness of zero.

13.4 System Status

The system has by the end of the project been implemented withall basic functionalities. The system is
able to map records from a data set onto the features of the 3 test glyphs. The system is able to display
all feature mapped glyphs inside a 3D scatterplot, and can handle a re-mapping of the features. Further-
more, the system is able switch into a navigation mode, whichallows the user to navigate through the
system in low detail, but with a high frame rate. Screenshotsof the system displaying 50 Hourglasses
may be seen in figure 13.2 on the next page and 13.3 on the facingpage.



13.4. SYSTEM STATUS

Figure 13.2: A screenshot of the system utilising the hourglass glyph

Figure 13.3: A screenshot of the system utilising the hourglass glyph.
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Figure 13.4: A screenshot of the system utilising the diamond glyph.

Figure 13.5: A screenshot of the system utilising the cross glyph.
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CHAPTER 14
Acceptance test

The different procedures for the test cases are described. Furthermore, a discussion of the results is
conducted.

14.1 Test of general functionality

This test involves two test cases, described below. A test journal can be seen in appendix H on page 132.

14.1.1 Test description

Mapping is testing a normalised data set, which consists of 50 records with 4 data dimensions for each
record. If the data dimensions are mapped correctly to the features the test is successful.

Continous remapping involves testing whether continous remapping of data dimensions to object fea-
tures is possible. The test is a success if remapping occurs correctly.

14.1.2 Discussion

The system is able to map data set records correctly onto a glyph. Furthermore, the system is able to
remap a glyph with new features correctly, and switch between different glyphs.

14.2 Test of performance

This test involves two test cases, described below. A test journal can be seen in appendix H on page 132.

14.2.1 Test description

Frame rate the frame rate is tested in both navigational mode and high definition mode, with a scene
containing 50 glyphs and a scene containing 1000 glyphs.

Reslicing the reslicing time for a scene containing 50 glyphs and for a scene containing 50 glyphs is
tested.

14.2.2 Discussion

The time to slice the glyphs in a scene is proportional to the number of glyphs in the scene.
The results show, the navigation mode has a significantly higher frame rate than the high density mode,
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14.3. TEST OF PERCEPTION

which means that the implementation of the navigation mode is a necessity for the usability of the
system.

14.3 Test of perception

This test involves the test case described below. A test journal can be seen inappendix H on page 132.

14.3.1 Test description

Object perception the object perception in the system is tested using select test cases from the article
[Raja et al., 2004].

14.3.2 Discussion

The question of determining the glyph with the largest y component, which demonstrates, that the
ability to understand a single data point in the system, is satisfactory. The trends were quickly spotted
based on glyph colour, which confirms that colour is one of themost powerful and robust features in
3D visual data mining. The clustering evaluation demonstrated that the shape of the hourglass glyph is
not a very conspicuous feature.
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CHAPTER 15
User interview

This is a summary of an interview with Erik Granum, conductedon May 27th 2004 , based on the
questions in appendix G. The questions are not asked directly, but are only used as a guidelines for the
interview. The interview can be divided into four main topics:

• Usability of the system

• Clarity of the 3D space

• Volume rendering

• Graphical user interface

Usability of the system

Displaying many features mapped to one glyph, limits the number of features a person is able to perceive
in a scene visualising a large data set. However, large data sets can be explored in other ways. One way
of describing a large data set with few multi-featured glyphs could be displaying glyphs representing
clusters of data. With a scheme like that, it may also be possible to exploit the fact that volumes can
have both an exterior appearance and an interior content, only revealed when entering the object.

Clarity of the 3D space

When mapping data dimensions to various glyph features, theimportance of the data dimensions has to
be taken into consideration as the priority of the differentfeatures is disproportionate. Furthermore, not
all features are easily perceived at a far distance, e.g. texture, due to both the distance and high density
of the glyphs. This can also result in an overlap of the glyphs. Additionally, high density causes low
perception of the features on the glyphs.

Volume rendering

When generating glyphs it should be considered if volume rendering is the right approach in contrast
to surface based rendering. For the expert user it seems thatthe diamond and cross glyphs could
be generated by using surface based rendering, as they are not advanced objects. Furthermore, the
use of the volume rendering technique enables glyphs with non-symmetrical appearances and hereby
increasing the number of features.

Graphical User Interface

The Graphical User Interface (GUI) should be implemented, so the user is able to map data dimensions
to different features in real-time while watching the 3D space. This can be done through the existing
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3DVDM solution with a separate laptop running a window basedGUI. If the GUI is to be implemented
in 3D space, it should appear as a sort of tool bar that can freely be moved within the space.
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CHAPTER 16
Conclusion

This chapter is the conclusion of a project made by group 822,8th semester specialisation in Computer
Vision and Graphics 2004, Laboratory of Computer Vision andMedia Technology, Aalborg University.
The purpose of this project is to display advanced visual objects in a 3D visual data mining system, and
allow navigation through this system in order to explore multi-dimensional data sets in arbitrary view
directions and from arbitrary view points.

16.1 Purpose of the project

The aim of this project is to display advanced objects in a 3D visual data mining system, and allow a
human observer as a visual explorer to navigate the system, in order to explore multi-dimensional data
sets in arbitrary view directions and from arbitrary view points. In order to develop advanced objects,
the conceptual possibilities and the perceptual possibilities of these objects are studied. Since the group
does not possess expert knowledge in the area of perception psychology, this part of the project is solely
based on available literature.

To explore the possibilities of advanced graphical objects, a volume rendering technique is employed
to render these. The implementation of this is based on the graphic Application Programming Interface
(API) OpenGL, as this has been introduced in a semester course.

In order to facilitate user interaction in mapping data properties to object properties, a simple Graphical
User Interface (GUI) is employed.

To ensure a reasonable performance from the system, variouscompression methods are studied in
regards to volumetric image data. Furthermore, balancing speed and level of detail, when navigating
the 3D visual data mining system is explored.

Verification of results, is performed through an acceptancetest. Furthermore, a user interview with an
expert VDM user is conducted, to provide a perspective on theusability of the system.

16.2 Methods

In this project, three key elements are to be explored. Theseare, the perceptual possibilities of using
advanced objects to represent multi-dimensional data setsin visual data mining. The conceptual possi-
bilities of how to generate and display advanced objects in 3D space, and performance issues to ensure
the users ability to move freely in the 3D space.

16.2.1 Visualisation of multi-dimensional data

Three different test objects have been designed to present multi-dimensional data. The initial assump-
tion for the objects is to be able to map many data dimensions to different object properties in order to

94



16.3. RESULTS

enable a user to detect visual tendencies. Three main properties of the three test objects are, position in
3D space, colours, and basic shape deformation.

16.2.2 Displaying advanced objects in 3D space

Volume rendering is used in order to provide a flexible way of displaying both advanced exteriors and
interiors of objects.

For this project the volume rendering technique used is volume slicing. This entails sampling of a
number of planes, perpendicular to the viewing direction from volumetric image data. The sample
planes are mapped to a series of corresponding, semi-transparent, planes in 3D space, providing a three
dimensional impression of the volumetric image data.

To ensure a high level of detail for all rendered objects, they are rendered as individual volumes.

16.2.3 Performance of the system

To ensure that the user of the system is able to move freely in the 3D space, a navigation scheme is
employed. This involves an alternation, based on the viewing angle, of three pre-made texture stacks,
perpendicular to each of the three major axes. This minimises the need for the CPU-heavy task of
slicing all volumes when navigating, thereby increasing the animation frame rate.

To enable the system of displaying large amounts of objects in 3D space, memory usage is considered.
Volumetric image data is compressed in order to minimise memory usage. Instead of using a standard
compression on all the volumetric image data, a significant amount of memory can be saved by reducing
it to the minimum amount of information. This is done individually for each object type, e.g. by taking
advantage of symmetry.

16.3 Results

The system is evaluated through both an acceptance test and an interview with an expert 3D visual data
mining system user.

16.3.1 Acceptance test

The acceptance test is divided into three main test cases: General functionality, performance, and object
perception.

The general functionality of the system is consistent with the requirements defined in the specification
of requirements in chapter 7 on page 38. This means that the system is able to map a multi-dimensional
data set to properties of a set of corresponding graphical objects. Furthermore, continuous re-mapping
of data dimensions to object properties.

The performance of the system is tested for two important factors, the animation frame rate and the
re-slicing time. The animation frame rate is measured during navigation mode. With 50 objects ,in the
scene, the frame rate is 145 fps. With 1000 objects in the scene, the frame rate is reduced to 7.5 fps.
From the test it follows that the system is able to handle a maximum of 500 objects, while maintaining
the requested frame rate of 15 fps.
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CHAPTER 16. CONCLUSION

The perception of the hourglass glyph is tested to determinethe level of understanding it is able to
provide of an underlying multi-dimensional data set. The hourglass glyph is able to provide a relatively
fast understanding visual tendencies in the test data.

16.3.2 User interview

The user interview with Erik Granum, professor of Information systems, Aalborg University. The
following summarises the essentials of the interview.

Erik Granum points out that the displaying of many features mapped to one glyph, limits the number of
objects that can be visualised in a scene while maintaining clear perception of all features. Furthermore,
he points out that an application for volume rendering may beletting objects represent clusters of data,
e.g. by utilising both the exterior and interior of the objects.

16.3.3 Volume rendering vs. surface based rendering

When evaluating volume rendering and surface based rendering, it is concluded that the two methods
have different areas of application within 3D visual data mining. Surface based rendering is well suited
for visualising a large number of objects with few features,while volume rendering is well suited for
visualising a limited number of objects with many features.

16.4 Prospect

The area of volume rendering has many aspects, of which this report mainly researches the area of
conceptual possibilities. The area of perceptual possibilities is primarily based on existing research.
This section will describe some aspects that can be further researched.

An approach for improving the perceptual possibilities is to look into the area of structuring the input
data set, in order to represent several data records with a single graphical object. A method of doing
this is clustering, enabling presentation of a large data set with few objects. With these objects the
possibilities of displaying both advanced exteriors and advanced interiors can be used.

Other approaches are to explore the use of different axes, e.g. nominal axes, and possibilities of using
non-symmetrical objects to increase the number of available features.

The system developed in this project is a limited self contained prototype system. To increase the pos-
sibilities of both user interaction, e.g. a standard graphical user interface and stereo vision, and loading
of data, an implementation as a library into the VR++ system may be considered. Furthermore, using
VR++ will enable distribution of processing tasks in the system, thereby increasing the performance.
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APPENDIX A
Open Graphics Library - OpenGL

In this appendix, a short introduction to OpenGL is described in relation to both surface based and
non-surface based purposes. Furthermore, geometric primitives in OpenGL are described.

All surface based primitives are eventually described in terms of their vertices - coordinates that define
the points themselves, the endpoints of line segments, or the corners of polygons.

OpenGL structure

Source:[Gillies, 2004]
Open Graphics Library (OpenGL) is the computer industry’s standard application program interface
(API) for defining 2D and 3D graphic images. OpenGL specifies aset of commands or immediately
executed functions. Each command directs a drawing action or causes special effects. A list of these
commands can be created for repetitive effects. OpenGL is independent of the windowing characteris-
tics of each operating system (Microsoft Windows and X Windows), but provides special routines for
each operating system that enable OpenGL to work in that system’s windowing environment. OpenGL
comes with a large number of built-in capabilities requestable through the API. These include hid-
den surface removal, alpha blending (transparency), anti aliasing, texture mapping, pixel operations,
viewing and modelling transformations, and atmospheric effects (fog, smoke, and haze).

Figure A.1: Overview of the OpenGL API. Source: [Gillies, 2004]

The functionality of the OpenGL library is extended by a number of related libraries: OpenGL Util-
ity library (GLU) contains several convenience routines which are implemented in terms of OpenGL
commands. These include routines for setting up viewing transformation. The OpenGL Utility Toolkit
(GLUT), a window system independent toolkit for writing OpenGL programs, implements a simple
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windowing application programming interface for OpenGL. In addition it provides a portable applica-
tion programming interface, which facilitates writing a single OpenGL program that works on windows
systems such as Microsoft Windows and X Window system environments. Each window system has
its own library, which is OpenGL extension (GLX) for X Windowsystem and (WGL) for Microsoft
Windows. OpenGL is not a general purpose graphics system. Instead, OpenGL is a polygon-based
rendering system which supports a small number of geometricprimitives for creating models: Points,
lines and polygons.

Points

A point is represented by a set of floating-point numbers called a vertex. All internal calculations are
done as if vertices are three-dimensional. Vertices specified by the user as two-dimensional (that is,
with only x and y coordinates) are assigned a z-coordinate equal to zero by OpenGL. In figure A.2 five
vertices are shown. The GL_POINTS in OpenGL are individual points.

V1
 V2


V4


V3
V0


GL_POINTS


Figure A.2: Individual points called vertices. Source: [Gillies, 2004]

Lines/edges

In OpenGL, line means line segment. There are easy ways to specify a connected series of line seg-
ments, or even a closed, connected series of segments. In allcases the line segment type causes suc-
cessive pairs of vertices to be interpreted as the endpointsof individual segments. Because the inter-
pretation is done on a pairwise basis, successive segments usually are disconnected. In figure A.3 three
different ways to show segments may be seen. The GL_LINES arepairs of vertices interpreted as indi-
vidual line segments, the GL_STRIP is a series of connected line segments and GL_LOOP is the same
as GL_STRIP, with a segment added between the last and the first vertices.
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Figure A.3: GL_LINES, pairs of vertices interpreted as individual line segments. GL_STRIP, series of connected
line segments and GL_LOOP, the same as GL_STRIP with a segment added between the last and the first vertices.
Source: [Gillies, 2004]
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Polygons

Polygons are the areas enclosed by single closed loops of line segments, where the line segments are
specified by the vertices at their endpoints. A polygon can bedisplayed in various ways. The interior
can be filled with a solid colour, or pattern, and the line segments can optionally be displayed. In
general, polygons can be complicated, so OpenGL has restrictions on what constitutes a primitive
polygon. Their are three ways to describe polygons, simple,convex and flat:

• Simple polygons are where lines do not intersect.

• Convex polygons are where two points lie inside the polygonand the line joining the points also
lie inside the polygon.

• Flat polygons are where polygons lie in a plane.

Since OpenGL vertices are always three-dimensional, the points forming the boundary of a particular
polygon does not necessarily lie on the same plane in space. In many cases it lies on a plane, if all the
z coordinates are zero, for example, or if the polygon is a triangle. If a polygon’s vertices does not lie
in the same plane, then after various rotations in space, changes in the viewpoint, and projection onto
the display screen, the points might no longer form a simple convex polygon. For example, imagine a
four-point quadrilateral where the points are slightly outof plane. You can get a nonsimple polygon that
resembles a bow tie as shown in figur A.4, which is not guaranteed to render correctly. This situation
is not all that unusual if you approximate surfaces by quadrilaterals made of points lying on the true
surface. You can always avoid the problem by using triangles, since any three points always lie on a
plane.

Figure A.4: A non-planar polygon which is transformed into anon-simple polygon. Source: [Gillies, 2004]

For many applications, non-simple polygons are needed, non-convex polygons, or polygons with holes.
Since all such polygons can be formed from unions of simple convex polygons, some routines to
describe more complex objects are provided in the GLU, for instance a quad, defined in OpenGl as
GL_QUAD. These routines take complex descriptions and break them down into groups of the simpler
OpenGL polygons that can then be rendered. The reason for OpenGL’s restrictions on valid polygon
types is that it is simpler to provide fast polygon-rendering hardware for that restricted class of poly-
gons. In figure A.5 on the facing page some examples of valid and invalid polygons GL_POLYGON
are presented.
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Figure A.5: Valid and invalid polygons. Source: [Gillies, 2004]
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APPENDIX B
SGI OpenGL Volumizer

Source:[Volumizer, 2004]
In this appendix a technique called volume slicing in the SGIVolumizer is explained. This technique is
used for presenting 3D objects and have separate advantages/disadvantages, which are also mentioned.
A short introduction to other features in SGI OpenGL Volumizer are also briefly referred to.

OpenGL Volumizer is a graphics API designed for interactive, high quality, scalable visualisation of
large volumetric data sets. The API uses OpenGL for volume rendering and hence allows standard
graphics applications to treat volumetric and surface datain a similar fashion.

A 3D object is any object that exists in 3D space. The triangles and other surface elements used to
represent such objects are 2D primitives. 2D primitives suffice in many cases because most objects
around us are adequately represented by their surface. Objects with interesting interiors are abundant in
everyday life. Clouds, smoke, and anatomy are all examples of volumetrically interesting objects. De-
spite their abundance and importance, volumetric objects are either not handled at all or their treatment
is substantially different from that of surface-based models.

OpenGL Volumizer extends the concepts of surface-based models to include volumetric shapes. The
result is the OpenGL Volumizer is capable of handling both types of models equally well.

Volume slicing

To render a shape OpenGL Volumizer uses a technique called volume slicing. Volumizer slices a
volume along a set of parallel surfaces. This slicing process is called polygonization. The result is a set
of polygons, called faces. Textures are mapped with each of these polygons.

The following are advantages of using volume slicing/3D texture mapping:

• Using 3D texture mapping for volume rendering is very fast since all the interpolations for each
fragment are done by the OpenGL hardware. Also, the texture data is resident in texture memory,
which reduces the data access time considerably.

• Since the volume rendering process generates a polygonal approximation of the data, the tech-
nique allows mixing of volumes with other polygonal data.

The orientation of the surfaces is configurable. The simplest case is when the surfaces are orthogonal
to the line of sight of the viewer. The surfaces, however, canbe aligned arbitrarily. The slices in these
figures are planar, but it is possible to slice the the volume in any shape.
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Minimal tessellation

In many cases volumes are cubes, also called hexahedral. Theminimum tessellation of a hexahedron
is five tetrahedra as shown in figure B.1. A tetrahedron, shownin figure B.2, is the simplest and most
efficient primitive that can be used to represent volumetricgeometry. Any shape can be tessellated into
tetrahedra. There are advantages and disadvantages to using minimal tessellations.

Figure B.1: A cube which consist of five tetrahedra.

Figure B.2: This is a structure of a tetrahedon.

• The advantage of minimal tessellation for one hexadron is the rendering process, which is in-
creased by a factor of five.

• The disadvantage is the interpolation between the tetrahedra. While different volumes, for in-
stance a cube, often is compact, and therefore consist of several colours, the minimal tessellation
is not uniform. This results as mentioned in interpolation between the edges of the shared tetra-
hedra. A way to minimise the problem is to increase the numberof more uniformly distributed
tetrahedra.

Bricks

A problem is some image data bases contain more voxel data than can be stored in a machine’s tex-
ture mapping hardware. This problem can be overcome by taking voxel data and break them up into
subsections, called bricks.

A brick is a subset of voxel data that can fit into a machine’s texture mapping hardware. Bricks are
regular hexahedra (boxes) with non-zero width, height, anddepth. Displaying a volume requires paging
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the appropriate brick data into texture memory. Anticipating which bricks to page can speed up the
performance of the application.

One or more adjacent bricks constitute a brick set. Volumetric appearance is defined as a collection
of one or more brick sets. Figure B.3 shows a brick set containing eight bricks, shown as eight cubes
within the large cube.

Figure B.3: A brick set containing eight bricks, shown as eight cubes within the large cube.

Typically, a shape can be described by a single brick set. In certain situations, however, more than one
brick set is required. For example, on machines that do not support three-dimensional texture mapping,
three separate copies of the data set may have to be maintained, one for each major axis to minimise
sampling artifacts.

Brick size plays an important role in the overall efficiency.Short data transfers may require frequent
interrupts in the data flow and can consequently affect performances. On the other hand, long data
transfers optimise the overall bandwidth but are not interruptible. The choice of brick size depends upon
the hardware architecture and therefore applications should select values taking system parameters into
consideration.
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APPENDIX C
Mathematical representations of the
glyphs

The purpose of this appendix is to analyse how the three typesof glyphs described in chapter 9 on
page 47 can be represented mathematically. With a mathematical representation of the glyphs it is
possible to generate the glyphs for use in programmes.

For each glyph type a number of features may be represented e.g. through shape, colour, transparency.
The mathematical representation of the glyphs mainly dealswith the shape of a glyph and how it
changes in regards to a given data value.

With a arbitrary voxelspace dimension given, the equationsmay be utilised to generate the voxelspaces
for each glyph needed for the volumetric renderer.

Cross glyph

For the cross glyph one feature is represented by the shape ofthe glyph. In figure C.1 the glyph is
represented geometrically.

Figure C.1: Geometric representations of the cross glyph

The shape is a cube when the shape controlling feature value is 0. When the value is 1, the bulges of the
glyphs cube grow, and the glyph takes on a cross shape. In order to describe the growing bulges of the
cross glyph, the equation for a parabola is applicable. The space, in which to describe the parabola, will
be limited to the xy-planes 1st quadrant. As the shape is symmetrical, it is only necessary to create the
shape within this confined area, as it can be mirrored afterwards. In figure C.2 on the following page a
sketch of the cross-glyph in the 1st quadrant is shown.

All equations will be denoted dynamically, with the intended resolution for the volume specified asd.

The range of the quadrant is set to0 to d
2 as a mirroring will give the final glyph a range from−d

2

to d
2 in both the x and y direction. In figure C.2 on the next page two half parabolas are shown. The

parabolas are equal except they are confined to different axes as function axis. The maximum of the
parabolas is in the heightd2 units, and their roots are in the widthd6 units from the symmetry axis. The
two parabolas are raisedd6 units in both directions, which makes ad

6 by d
6 square in the lower left corner
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APPENDIX C. MATHEMATICAL REPRESENTATIONS OF THE GLYPHS

Figure C.2: The cross glyph as two parabolas in the 1st quadrant of the xy-plane.

if the parabolas where to be multiplied by 0. This means, if limiting the equation to the parabola facing
upwards, the parabola has a maximum in(0, d

3) and roots in(−d
6 , 0) and(d

6 , 0). The range of the up
facing parabola is−d

6 ≤ x ≤ d
6 . In order to find the equation for the parabola, the two roots are used to

find the basic parabola equation:

y = (x − d

6
) · (x +

d

6
)

y = x2 − (
d

6
)2

Since the maximum of the parabola represents the highest value, the parabola equation must be negative:

y = −x2 − (
d

6
)2 (C.1)

The equation has a maximum value of(d
6 )2, hence the parabola equation must be calibrated so the value

of the maximum isd3 . To compensate the equation is multiplied byc:

c =
d
3

(d
6)2

=
12

d
(C.2)

Inserting equation C.2 into equation C.1 yeilds

y = −12

d
· x2 +

d

3
(C.3)

To obtain the correct shape of the glyph the equation is multiplied by the data value. When multiplied
by 0 the shape becomes flat, and when multiplied by one the shape is unchanged thus the shape will
range from a cube to a full cross glyph. In order to make the 0-value turn the shape into a cube,d

6 is
added to expression C.3. This will create a cube ranging from−d

6 − d
6 in the centre of the space when

the parabolas are mirrored on the axes.

The final equation for the up facing parabola is:
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y = λ · (−12

d
· x2 +

d

3
) +

d

6
(C.4)

Whereλ controls the shape feature.

The equation for the parabola facing right in figure C.2 on thefacing page is equal to equation C.4, only
x and y have switched places:

x = λ · (−12

d
· y2 +

d

3
) +

d

6
(C.5)

with the range−d
6 ≤ y ≤ d

6 .

In figure C.3, equation C.4 and C.5 are utilised to create the mirrored 2D-representation of the equation.

Figure C.3: Mirrored 2D-representation of the equations.

The 2D-representation shown in figure C.3 may be used to create the 3D glyph. The glyph is symmet-
rical in all directions. To construct the 3D glyph, a voxelspace volume with the arbitrary dimensions
d × d × d is used. In each direction, x, y and z, the 2D image is applied,this means a xy, xz and yz
image. The 3D glyph is constructed by using the binary command AND. For each voxel in the volume
a glyph voxel is created if the corresponding xy, xz and yz voxel is a glyph pixel. If this is not the case
the voxel is set as a background voxel. The application of this method is illustrated in figure C.4.

Figure C.4: Creating a 3D glyph from a 2D glyph
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Diamond glyph

The shape of the diamond glyph is a morphing between a cylinder and a diamond-like shape, dependent
on the data values. Normally, a diamond is edged with straight surfaces, but in order to describe the
shape easily by a mathematical representation, the horizontal part of the shape is limited into a circular
shape. The circular diamond shape is illustrated in figure C.5.

Figure C.5: The circular diamond shape

The shape of the diamond glyph may be described using two equations: The equation of a circle and
the equation of a straight line. The circle equation controls the horizontal shape, while the straight line
equation controls the skewness of the shape. The shape controlling feature-value is denoted asλ. The
straight line must, whenλ is 0, intersect the points(d

2 , 0 and(0, d
2) and it must be horizontal ifλ is 1.

The straight line is illustrated in figure C.6.

Figure C.6: The straight line controlling the skewness of the diamond glyph

The line may be described through the following equation:

y = −(1 − λ) · x +
d

2
(C.6)

The way to enable the line to control the skewness of the glyph, is by letting the x value of the line
denote the radius of the circles the glyph is constructed from. This is illustrated in figure C.7 on the
facing page.

This requires a rewriting of equation C.6, with x replaced bythe radius,r:
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Figure C.7: The straight line controlling the radius of the diamond glyphs circles

r = −y − d
2

1 − λ

The equation of a circle is:

x2 + y2 = r2 (C.7)

Combining equation C.6 and C.7 equation C.8 is obtained:

x2 + z2 = (−y − d
2

1 − λ
)2 (C.8)

Hourglass glyph

The hourglass glyph, which is illustrated in figure C.8, is mathematically more complex than the previ-
ous two glyphs.

Figure C.8: A geometric visualisation of the hourglass glyph.

While the previous two where solid inside, the hourglass glyph employs morphing of a shell of glass
filled with sand in an amount that corresponds to another datavalue. In addition the glyph has a head
and a foot that also have to be modelled. An illustration of these elements may be seen in figure C.9 on
the following page.
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Figure C.9: The different elements of the hourglass glyph, head and foot, sand, and glass.

The three elements will be described in the following.

Glass

The glass of the hourglass glyph is similar to the cross glyph, as it also utilises the parabola equation to
describe the shape in 2D space. When the 3D shape is implemented it is done similar to the diamond
glyph, by using the x value of the parabola equation as radiusfor the circle equation.

The thickness of the glass is set tod32 units. The maximum radius of the cylinder is set to15·d
32 to make

sure that the glass does not get outside the head and foot of the hourglass. The parabola equation for the
glass has the roots−15·d

32 and 15·d
32 . The maximum denotes how close the glass is to the centre. There

should be left d
32 units of space for the centre, when the parabola is at it’s maximum. The thickness of

the glass isd
32 units, and therefore the maximum of the parabola must be set to d

2 − 2·d
32 = 7·d

16 . This
means the equation for the parabola is:

x = λ · c · (y − (
15 · d
32

)) · (y + (
15 · d
32

)) + k

x = λ · c · (y2 − d2 · (15
32

)2) + k

c is the calibration value that normalises the equation to have the right height in the maximum.k is the
constant that places the parabola right vertically when thex-axis is perceived as the vertical axis. The
value ofc is:

c =
7·d
16

152

322 · d2

c =
7

d · 152

64
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The value ofk is d · 15/32. The values are applied, and the equation yields:

x = λ · ( 7

d · 152

64

· y2 − 7 · d
16

) +
15 · d
32

(C.9)

As in the diamond glyph, the x-value denotes the radius in thecircle equation:

x2 + z2 = (λ · ( 7

d · 152

64

· y2 − 7 · d
16

) +
15 · d
32

)2 (C.10)

The range for equation C.10 is−15·d
32 ≤ y ≤ 15·d

32 . The equation may be used to create a solid paraboloid
shaped cylinder, but the shape must be tubular because it hasto be filled inside. Therefore a similar
paraboloid shaped cylinder with a radius ofd

32 units less must be subtracted from the first cylinder. This
will create a paraboloid shaped tube with a radius15·d

32 and a glass thickness ofd32 units.

Sand

The sand utilises the same equation as the inner paraboloid shaped cylinder from the glass element to
create the shape formed by equation:

x2 + z2 = (λ · ( 7

d · 152

64

· y2 − 7 · d
16

) +
15 · d
32

− d

32
)2 (C.11)

The difference is the range of the sand which is dependent on agiven data value. When the sand
controlling data value has a value of 0 the sand is only filled from−15·d

32 to− 45
128 · d and when the value

is 1, the glass is filled from−15·d
32 to 45

128 · d. The glass is never emptied or filled all the way to the top
due to the fact that the colour of the sand may be used to show another feature of the data set, therefore
the sand must be visible at all times. If the sand feature is denoted asγ the range of the sand shape is:
−15·d

32 ≤ y ≤ d
2 + 45

128 · d − 45
64 · γ · d.

Head and foot

The head and the foot of the hourglass may be described as two circles. The mathematical representa-
tions of the circles are the same except for the z-values having opposite signs.

The vertical shape of the head may be described as:

(x − 15 · d
32

)2 + (y − 15 · d
32

)2 = (
d

32
)2

If x is isolated:

x =

√

(
d

32
)2 − (y − 15 · d

32
)2 +

15 · d
32

(C.12)

The y value is ranging from7·d
16 ≤ y ≤ d

2 . Equation C.12 is used as radius in equation C.13:

x2 + z2 = (

√

(
d

32
)2 − (y − 15 · d

32
)2 +

15 · d
32

)2 (C.13)
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APPENDIX D
The affine factorisation method

Source: [Lacroute and Levoy, 1993]
In this appendix the affine factorisation method, based on affine transformations including uniform and
non-uniform scales, translations and shears used in parallel projections, is derived. In the derivation,
four different coordinate systems, shown in figure D.1 will be used:

Object coordinates are the standard coordinates of the volume data. The unit distance of each axis
equals the length of one voxel. The axes are labelledx0, yo andzo.

Standard object coordinates are formed by converting the axes of the object coordinates so that the
principal viewing axis becomes the third coordinate axis. The axes are labelledi, j andk, which
is the principal viewing axis.

Sheared object coordinatesare formed by shearing the standard object coordinates withthe shear ma-
trix from the shear warp factorisation. The shear object coordinate system is also the coordinates
system for the intermediate image. The axes are labelledu, v andw.

Image coordinates are the coordinates for the final image. The warp matrix of theshear warp fac-
torisation transforms sheared object coordinates into image coordinates, and the original viewing
transformation matrix transforms object coordinates intoimage coordinates. The axes are la-
belledxi, yi andzi.

Figure D.1: The four different coordinate systems used in the derivation of the affine factorisation method.
Source: [Lacroute and Levoy, 1993]

In the derivation of the affine factorisation method, the viewing transformation matrix is a four-by-four
matrixMview, which transforms homogeneous points from object space to image space:









xi

yi

zi

wi









= Mview









x0

y0

z0

w0








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The goal of the derivation is to factorMview as follows:

Mview = Mwarp2D · Mshear3D (D.1)

whereMwarp2 denotes an affine transformation matrix andMshear3D denotes a shear matrix which
transforms object space to sheared object space. This transformation requires shearing the coordinates
system until the viewing direction becomes perpendicular to the slices of the volume.

The principal viewing axis

[Lacroute and Levoy, 1993] defines the principal viewing axis as the object space axis that forms the
smallest angle with the viewing direction vector. In image space the viewing direction vector is~vi =
(0, 0, 1). Let~v0 be the viewing direction vector transformed to object space. It follows that:

~vi = Mview,3x3 · ~v0 (D.2)





0
0
1



 =





m11 m12 m13

m21 m22 m23

m31 m32 m33









vo,x

vo,y

vo,z



 (D.3)

wheremij denotes the the elements of the upper-left 3x3 sub-matrix ofMview. It is possible only to
use the upper-left 3x3 sub-matrix as~vi and~v0 are vectors. The linear system of equations, D.2, can be
solved analytically for~vo,x, ~vo,y, and~vo,z respectively, using Cramer’s rule [Kreyszig, 1999].

vo,x =

∣

∣

∣

∣

∣

0 m12 m13

0 m22 m23

1 m32 m33

∣

∣

∣

∣

∣

| Mview,3x3 | =
m12m23 − m22m13

| Mview,3x3 |

vo,y =

∣

∣

∣

∣

∣

m11 0 m13

m21 0 m23

m31 1 m33

∣

∣

∣

∣

∣

| Mview,3x3 | =
m21m13 − m11m23

| Mview,3x3 |

vo,z =

∣

∣

∣

∣

∣

m11 m12 0
m21 m22 0
m31 m32 1

∣

∣

∣

∣

∣

| Mview,3x3 | =
m11m22 − m21m12

| Mview,3x3 |

Since the denominator is the same for all three expressions the solution can be written as:

~vo =





m12m23 − m22m13

m21m13 − m11m23

m11m22 − m21m12





The principal viewing axis is the largest component of~vo:
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c = max(| vo,x |, | vo,y |, | vo,z |)

Transformation to standard object coordinates

Shear warping is a resampling and composition of the voxel slices which are perpendicular to the princi-
pal viewing axis. In order to eliminate special cases for each of the three axes, the volume is transformed
into standard object coordinates. Is the principal viewingaxis thexo axis, then the converted matrix is:

P =









0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1









Is the principal viewing axis theyo axis, then the converted matrix is:

P =









0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1









Is the principal viewing axis thezo axis, then the converted matrix is:

P =









1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1









The transformation from object coordinates to standard object coordinates is given by:









i
j
k
0









= P ·









xo

yo

zo

0









The matrixM ′
view is a converted viewing transformation matrix, which transforms points from object

space into image space:

M ′
view = MviewP−1

The shear and warp factors

The converted viewing transformation matrixM ′
view has to be factorised into a shear in thei and j

directions. After the shear transformation, the viewing direction must be perpendicular to the(i, j)
plane. In standard object space the viewing direction vector is:
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~vso = P · ~vo =





m′
12m

′
23 − m′

22m
′
13

m′
21m

′
13 − m′

11m
′
23

m′
11m

′
22 − m′

21m
′
12





wherem′
ij are elements ofM ′

view. The projection of the direction vector onto the(i, k) plane has a
slope ofvso,i/vso,k as shown in figure D.2

Figure D.2: The cross-section of the volume and the viewing direction in standard object space. In order
to transform the volume to sheared object space the volume must be sheared in thei direction. Source:
[Lacroute and Levoy, 1993]

In order for the viewing direction to be perpendicular to thek-planes in thei direction, the shear has to
be the negative of the slope. This also holds for the shear in thej direction. Thus the shear coefficients
are:

si = − vso,i

vso,k

=
m′

22m
′
13 − m′

12m
′
23

m′
11m

′
22 − m′

21m
′
12

(D.4)

sj = − vso,j

vso,k

=
m′

11m
′
23 − m′

21m
′
13

m′
11m

′
22 − m′

21m
′
12

(D.5)

The shear warp factorisation of the converted viewing transformation can now be written as:

M ′
view = M ′

view









1 0 −si 0
0 1 −sj 0
0 0 1 0
0 0 0 1

















1 0 si 0
0 1 sj 0
0 0 1 0
0 0 0 1









(D.6)

=








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11 m′

12 (m′
13 − sim
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11 − sjm
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′
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′
31 − sjm

′
32) m′

34
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















1 0 si 0
0 1 sj 0
0 0 1 0
0 0 0 1









(D.7)

where the left factor is an affine warp matrix and the right factor is a shear matrix.

Projection to the intermediate image

Applying the shear transformation, just derived, to the standard object coordinate system in order to
obtain the coordinate system for the intermediate image, results in a coordinate system where the origin
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is not located in the top-left corner of the intermediate image. A translation of the sheared coordinate
system is therefore necessary. The four possible cases for the translation is illustrated in figure D.3

Figure D.3: The four cases of translation the sheared coordinate system. The translation (ti, tj) specifies the
displacement from the origin of the standard object coordinate system (i = 0, j = 0) to the origin of the inter-
mediate image coordinate system (u = 0, v 0 0).kmax is the maximum voxel slice index in the volume. Source:
[Lacroute and Levoy, 1993]

Furthermore, the stacking order of the voxel slices in the intermediate image has to be calculated.
In standard object space the voxel slices are ordered by their k coordinate. The stacking order can
be found by examining the component of the viewing directionvector corresponding to the principal
viewing axis,vso,k. If vso,k > 0 then the voxel slice in thek = 0 plane is the front slice. Otherwise the
slice in thek = kmax plane is the front slice.

When the translation has been chosen, the shear and warp matrix factors can be rewritten as seen in D.8
and D.9:

Mshear =









1 0 0 ti
0 1 0 tj
0 0 1 0
0 0 0 1
















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0 0 1 0
0 0 0 1









=









1 0 si ti
0 1 sj tj
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







(D.8)

Mwarp =








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11 m′

12 (m′
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


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(D.9)
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Since the warping is performed in 2D the third row and the third column may be removed fromMwarp:

Mwarp2D =





m′
11 m′

12 (m′
14 − tim

′
11 − tjm

′
12)

m′
21 m′

22 (m′
24 − tim

′
21 − tjm

′
22)

0 0 1



 (D.10)

Equation D is the matrix that transforms the 2D intermediateimage into the final 2D image:





xi

yi

1



 = Mwarp2D





u
v
1




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APPENDIX E
Shading

Source: [Slater et al., 2001]
This appendix contains a description of lighting in a 3D scene, and a model of how light affects 3D
surfaces.

Light sources

In computer graphics there are a large number of light sources, where the most common are:

Point light source A single point in 3D space, that emits light equally in all directions.

Spot light source A single point in space, from where light is emitted equally,but only in a limited
area and direction. The light may be spread in a cone from the point of origin.

Plane light source A surface in 3D space, with a number of light points spread upon the surface,
spreading light equally in a hemisphere.

Global illumination

In computer graphics the ideal shading of surfaces is by utilising a global illumination model, to cal-
culate all lighting in a scene. Global illumination calculates influences from all light sources in all
directions at all points of a 3D scene.
To calculate global illumination the following equation isutilised:

Figure E.1: The global illumination factors.

L(ωo) =

∫

Ω
BRDF (ωo, ωi) · L(ωi)dωi (E.1)
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where:
BRDF: Bidirectional Reflection Distribution Function
ωi: Angle to view point.
ωo: Exiting angle.
Ω: All angles from calculation point.
An illustration of the factors in the calculation and their placement can be seen in figure E.1 on the
facing page.
Calculations of global illumination is a demanding process, which raises a need for a simplified method
with less heavy calculations.

Local illumination: Lambert’s Reflection Model

A way to simplify illumination calculations is by only calculating the most significant influencing lights,
as the peripheral lights has little effect on the illumination. This is called local illumination.

The Lambert Reflection Model is based on local illumination.The model has no base in reality, but is
merely a simple way to obtain shading of 3D objects.

The shading of each 3D surface, may be divided into three categories. Diffuse reflection, which is the
direct illumination of a surface, which makes the surface visible and specular reflection which controls
how the surface shines on surfaces with direct light, see figures E.2 and E.3. Ambient reflection controls
the illumination of surfaces not affected by light.

Figure E.2: Diffuse reflection is the direct illumination ofa surface, which makes the surface visible.

Figure E.3: Specular reflection controls how the surface shines on surfaces with direct light.

To calculate the total light reflection in a scene the three reflections must be calculated for each point.

Diffuse reflection

Diffuse reflection may be calculated with the following equation. The factors are illustrated in fig-
ure E.4 on the next page:

Ir,d = kd · Ii · cos D (E.2)

where:
Ir,d: The resulting intensity value for each edge voxel.
kd: Diffuse reflection coefficient. One for each colour channel.
Ii: Intensity of the incoming light.
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Figure E.4: The diffuse reflection of the Lambert Reflection Model.

D: The angle between the normal vector and the incoming lightvector.
~n: The normal vector to the surface.
~Li: The vector for the incoming light.
~V : The viewing vector.

The diffuse calculations are performed for each colour channel denoted bykd. The calculations are
performed with normalised values, ranging between 0 and 1. With normalised vectors,cos D may be
calculated with the following equation:

cos D = ~n · ~Li (E.3)

Specular reflection

Specular reflection may be calculated with the following equation. The factors are illustrated in fig-
ure E.5:

Figure E.5: The specular reflection of the Lambert ReflectionModel.

Ir,s = ks · Ii · (cos S)m (E.4)

with:
ks: Specular reflection coefficient.
Ii: Intensity of the incoming light.
S: The angle between the perfect reflection angle and the viewing angle.
m: Shininess-factor. Ranging from 1 and to values above. Thehigher the value, the more concentrated
the specular reflection will be.
~Li: The angle for the incoming light.
~H: The angle between the viewing angle and the incoming light angle.
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~R: The perfect light reflection angle.

These are the same calculations for each colour channels.
Thecos S may be replaced by:

cos S = ~V • ~R = ~n • ~H

Where
~H = ~V + ~Li

By applying the latter replacement the calculations may be simplified, as all factors~n, ~V and ~Li are
known.

Ambient reflection

The ambient reflection is the simplest of the three, as it doesnot incorporate angle calculations. Ambient
is the light that affects all points.

The ambient reflectionIa may be calculated with:

Ir,a = ka · Ia (E.5)

where:
ka: Ambient reflection coefficient
Ib: Ambient light intensity

E.0.1 Total reflection

All factors adds to the total reflection like:

Ir = Ir,a + Ir,d + Ir,s (E.6)

If there are several light sources within the scene, they will have to be calculated one at a time, and the
partial results summed at the end. Light sources has no effect on the ambient reflection, hence this can
be omitted of the illumination calculations.

Ir = ka + Ia +

N
∑

j=1

(kd · Ii,j · (~n • Li,j)) +

N
∑

j=1

(ks · Ii,j · (~n • (~V + ~Li,j))
m) (E.7)

This can be reduced to:

Ir = ka + Ia +
N

∑

j=1

(Ii,j · (kd · (~n • ~Li,j) + ks · (~n • (~V + ~Li,j))
m)) (E.8)

The summations ranges from 1 to N, with N denoting the number of light sources.
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APPENDIX F
Compression Methods

This appendix investigates how much different types of compression can decrease the amount of re-
quired memory used to store the voxelspaces.

Each compression method will partially be evaluated by how well it reproduces the uncompressed
images seen in figure F.1 and figure F.2, respectively. Furthermore, the compression methods will be
evaluated by their ability to save space. The theory for eachmethod will be analysed.

Figure F.1: The uncompressed photographic evaluation image.

Figure F.2: The uncompressed evaluation image of the hourglass glyph.

JPEG compression

Source: [Y.Q.Shi and Sun, 2000]
JPEG is short for Joint Picture Expert Group. In JPEG compression an image is first partitioned into 8x8
blocks. On each block a forward Discrete Cosine Transformation (DCT) is applied, and the resulting
coefficients are scanned through a zig zag pattern. The DCT isa variant of the Fourier transformation:

FDCT = Suv =
1

4
cucv

7
∑

i=0

7
∑

j=0

sij cos
(2i + 1)uπ

16
cos

(2j + 1)vπ

16
(F.1)
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The zigzag pattern can be seen in figure F.3. The reason for thepattern of the zig zag is to maintain a
redundancy from step to step through the path.

Figure F.3: Zig zag scanning order of the DCT coefficients.

The blocks are then be converted into chrominance and luminance images, which are used in the
quantisation-process of the image. In this process the theory is that the first pixel of the block, is
the one containing the most information, and that the rest ofthe pixels in the block, can be derived
from the first. With a set of quantisation tables for the luminance and chrominance plus the DCT co-
efficients it is possible to compress each block into a bit-stream, where the most probable pixels has
the shortest bit-sequence, and thus compressing the image.The Huffman tables are used to encode the
bit-sequences.

If JPEG-compression is applied to the evaluation image withthe optimal quality parameters set, the
resulting image can be seen in figure F.4.

Figure F.4: The photographic evaluation image compressed using JPEG.

If the resulting image is subtracted from the original uncompressed image, the errors of the compres-
sion, if any, will be visible. In figure F.5 on the next page theresult of such a subtraction can be seen.

The computations are also applied to the image of the hourglass. The compressed image and resulting
subtracted image can be seen in figure F.6 and in figure F.7 on the following page, respectively.

As the images show, the JPEG compression has problems with areas that have a big contrast, such as
the text in image F.1, which is a result of the quantisation-process trying to find a pixel-to-pixel relation
in a high contrast area.
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APPENDIX F. COMPRESSION METHODS

Figure F.5: The errors of the JPEG compression appears as white dots on the background, the whiter the dots,
the greater the error

Figure F.6: The evaluation image of the hourglass compressed using JPEG.

Figure F.7: The errors of the JPEG compression appears as white dots on the background, the whiter the dots,
the greater the error.
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Reduction of file size

The original size of the photographic evaluation image is 848 KB. The JPEG compressed version has a
size of 39.2 KB.
The compression ratio for the JPEG compression on photos is then:848/39.2 = 21.6.
The original size of the glyph evaluation image is 96 KB. The JPEG compressed version has a size of
2.53 KB.
The compression ratio for the JPEG compression on redundantimages is then:96/2.53 = 37.94.

Advantages/disadvantages

Advantages: Good compression ratio. When dealing with normal photographs, the use of JPEG com-
pression is invisible in the image.

Disadvantages:The compression is not lossless. When dealing with images with high contrast, the
compression is very visible. No alpha channel.

PNG/MNG compression

Source: [W3C, 1996]
PNG is short for Portable Network Graphics. The format has been developed to provide a format with
good compression and lossless reproduction. Furthermore,alpha compression is implemented in the
codec.

PNG compression specifies deflate/inflate compression. Deflate compression is an LZ77 derivative used
in zip, gzip, pkzip and related programs. Deflate-compressed data streams within PNG are stored in the
"zlib" format, which has the structure:

Compression method/flags code:1 byte
Additional flags/check bits: 1 byte
Compressed data blocks: n bytes
Check value: 4 bytes

The compressed data within the zlib data stream is stored as aseries of blocks, each of which can
represent raw data, LZ77-compressed data encoded with fixedHuffman codes, or LZ77-compressed
data encoded with custom Huffman codes. A marker bit in the final block identifies it as the last block,
allowing the decoder to recognise the end of the compressed data stream.

The check value stored at the end of the zlib data stream is calculated on the uncompressed data rep-
resented by the data stream. The zlib check value is useful mainly to cross-check that the deflate and
inflate algorithms are implemented correctly.

In a PNG file, the concatenation of the contents of all the chunks makes up a zlib data stream as specified
above. This data stream decompresses to filtered image data.

There is no required correlation between the structure of the image data (i.e., scanline boundaries) and
deflate block boundaries or chunk boundaries. The complete image data is represented by a single zlib
data stream that is stored in some number of chunks.
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APPENDIX F. COMPRESSION METHODS

An additional option when using PNG, is to reduce the paletteof colours, to describe the image using
only 256 (8 bits) different colours. This will result in an image that is flawed in comparison to the
original image. However images that already utilises few colours may gain a powerful compression
this way.

MNG (Multiple-image Network Graphics) is a variety of PNG, that allows a stream of different images
to be compressed in a single MNG-file, [Roelofs, 2002]. The stream of images could be a volumespace.

24 bits PNG compression is applied to the evaluation image, and the result may be seen in figure F.8.

Figure F.8: The PNG compression using 24 bits. Yielding a lossless reproduction.

There are no visible compression artifacts in the resultingPNG-compressed image. Due to the fact that
PNG is lossless, there is no reason to check for compression errors using a subtracted image.

8 bits PNG compression is applied to the evaluation image, and the result may be seen in figure F.9.

Figure F.9: The PNG compression using 8 bits. Yielding a lossy but good reproduction.

The original image is not the type of image, that 8 bits PNG (PNG8) is made for. This means that
there will occur errors in the resulting compressed image. Used on the right type of images, such as
glyph-images, with a limited use of different colours, thiswill reproduce the image lossless, and highly
compressed. The subtracted image in figure F.10 on the next page shows the errors using PNG8 on a
24 bits image. As can be seen, the reproduced PNG8 image is very close to the original image.

The computations are also applied to the image of the hourglass. The compressed image and resulting
subtracted image can be seen in figure F.11 on the facing page and in figure F.12 on the next page,
respectively.

It can be seen on figure F.12 on the facing page that no errors occur when compressing the hourglass
glyph.
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Figure F.10: PNG8 subtracted image.

Figure F.11: The evaluation image of the hourglass compressed using PNG.

Figure F.12: The errors of the PNG compression appears as white dots on the background, the whiter the dots,
the greater the error
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APPENDIX F. COMPRESSION METHODS

Reduction of file size

The original size of the photographic evaluation image is 848 KB. The 24 bit PNG compressed version
has a size of 352 KB.
The compression ratio for the PNG compression is then:848/352 = 2.4.
The original size of the Hourglass evaluation image is 96 KB.The 24 bit PNG compressed version has
a size of 3.1 KB.
The compression ratio for the PNG compression is then:96/3.1 = 30.96.

The 8 bit PNG compressed version of the photographic evaluation image has a size of 171 KB.
The compression ratio for the PNG compression is then:848/171 = 5.
The 8 bit PNG compressed version of the hourglass glyph has a size of 1.79 KB.
The compression ratio for the PNG compression is then:96/1.79 = 53.63.

Advantages/disadvantages

Advantages: The compression is lossless. Alpha channel. Good compression ratio, when dealing with
images containing large redundancy.

Disadvantages:Bad compression ratio, when dealing with normal photographs.
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APPENDIX G
User interview

In this appendix the guideline questions for the expert userinterview are described.

To study the perceptual properties and performance of the three advanced objects which have been
constructed, a user expert has been selected to comment on these concepts.

Questions concerning the interview are:

• Do the three glyphs look acceptable in their form? One example

is how the perception is for an arbitrary number of slices, for the

glyph to seem real. Another example is, if the features mapped to

the glyph are recognisable.

• Is it possible to observe the differences in the features where

the data set is normalised from 0 to 1? Or should the interval from 0

to 1 be divided into subintervals, so that one feature represents

more than one data dimension?

• Is the animation frame rate and the glyphs appearance acceptable, when

navigating in the 3D space?

• Can the three glyphs be expanded in any way, so the

representation of the data set is more adequate and are thereother advanced

glyphs which can be useful?

• Are there areas of data mining where using advanced glyphs is advantagous?

• How detailed should the information for each glyph be? Should the

user be able to select a certain glyph and have the information

concerning that glyph, in terms of which data dimensions aremapped

to which features?
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APPENDIX H
Test

This appendix contains the different tests performed on thesystem. The tests are: General functionality
Test, Performance Test and Immersion Test.

H.1 General functionality Test

H.1.1 Purpose

To test the basic functionalities of the system.

H.1.2 Setup

Computer: Abyss computer at CVMT.
CPU: 2xP4 Xeon 2.4 GHz
Memory: 2 GB
Graphics Card: GeForce 4 dual, driver: 1.0-5336
OS: Mandrake Linux 9.2, kernel 2.6.3-7

Programme: Volumetrics build 0.1
Window resolution:640 × 480
Volume resolution:128 × 128 × 128
Planes per glyph: 16
Plane texture Resolution:128 × 128
Data set: 2sphere, an artificial data set with samples placedin two sphere shaped clusters.

Test 1 is testing a normalised data set, which consists of 50 records with 4 data dimensions for each
record. If the data dimensions are mapped correctly to the features the test is successful.

Test 2 involves testing whether continuous remapping of data dimensions to object features is possible.
The test is a success if remapping occurs correctly.

H.1.3 Results

The hourglass glyph is utilized for the test. The initial mapping of coordinates:

The mapping is done correctly.

The GUI is called, and the mapping is reconfigured to:
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H.1. GENERAL FUNCTIONALITY TEST

Dimension Feature
X X
Y Y
Z Z
Cluster (W) Shape
none Pose
Z Sandheight
X Sand colour 1: Green
Y Sand colour 2: Red
X Head colour: Cyna
Y Foot colour: Magenta

Table H.1: The mappings used with the hourglass.

Dimension Feature
Y X
Z Y
X Z
Z Shape
none Pose
Cluster (W) Sandheight
Z Sand colour 1: Green
Z Sand colour 2: Red
Y Head colour: Cyna
X Foot colour: Magenta

Table H.2: The new mappings used with the hourglass.

The Initial mapping of coordinates:

And the system displays the new configuration correctly.

Similar tests were performed with cross and diamond glyph, and yielded the same result. The system
is also able to switch between different glyphs from one mapping to the other.

H.1.4 Discussion

The system is able to map data set records correctly onto a glyph. Furthermore, the system is able to
remap a glyph with new features correctly, and switch between different glyphs.
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APPENDIX H. TEST

H.2 Performance Test

H.2.1 Purpose

To evaluate the performance of the developed system, the system will be measured for frame rate, and
time to slicing volumes.

H.2.2 Setup

Computer: Abyss computer at CVMT.
CPU: 2xP4 Xeon 2.4 GHz
Memory: 2 GB
Graphics Card: GeForce 4 dual, driver: 1.0-5336
OS: Mandrake Linux 9.2, kernel 2.6.3-7

Programme: Volumetrics build 0.1
Window resolution:640 × 480
Volume resolution:128 × 128 × 128
Planes per glyph: 16
Plane texture Resolution:128 × 128
Data set: 2sphere, an artificial data set with samples placedin two sphere shaped clusters.

H.2.3 Results

The test is performed using two setups: a scene with 50 glyphs, and a scene with 1000 glyphs. With 50
glyphs the frame rate is measured for every 100 animation frame. With 1000 glyphs the frame rate is
measured for every 10 frame. For both setups the time to reslice all glyphs is measured. All scenes has
been tested in both navigation and High Definition (HD) mode.

50 Glyph scene

The scene is tested with two modes, HD mode and navigation mode.

HD mode frame rate
Cross Glyph: 9.06 fps
Diamond Glyph: 9.1 fps
Hourglass Glyph: 9.05 fps

Navigation mode frame rate
Cross Glyph: 143.74 fps
Diamond Glyph: 144.76 fps
Hourglass Glyph: 145.99 fps

Reslicing of 50 glyphs: 3.9 seconds.
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H.2. PERFORMANCE TEST

250 Glyph scene

The scene is tested with two modes, HD mode and navigation mode.
HD mode frame rate
Cross Glyph: 1.78 fps
Diamond Glyph: 1.82 fps
Hourglass Glyph: 1.8 fps

Navigation mode frame rate
Cross Glyph: 30.14 fps
Diamond Glyph: 30.92 fps
Hourglass Glyph: 30.33 fps

Reslicing of 250 glyphs: 19.55 seconds.

500 Glyph scene

The scene is tested with two modes, HD mode and navigation mode.

HD mode frame rate
Cross Glyph: 0.91 fps
Diamond Glyph: 0.9 fps
Hourglass Glyph: 0.89 fps

Navigation mode frame rate
Cross Glyph: 15.64 fps
Diamond Glyph: 15.25 fps
Hourglass Glyph: 15.13 fps

Reslicing of 500 glyphs: 39.3 seconds.

1000 glyph scene

As seen in the previous tests, there is no significant difference in the performance of each glyph type,
and the test with 1000 glyphs has been tested with only the hourglass glyph in both modes.

HD mode frame rate
Hourglass Glyph: 0.405 fps

Navigation mode frame rate
Hourglass Glyph: 7.5 fps

Reslicing of 1000 glyphs: 78.44 seconds.
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APPENDIX H. TEST

Calculations

Time to slice each glyph in 50 glyph scene:3.9
50 = 0.078

Time to slice each glyph in 250 glyph scene:19.55
250 = 0.078

Time to slice each glyph in 500 glyph scene:39.3
500 = 0.078

Time to slice each glyph in 1000 glyph scene:78.44
1000 = 0.078

The relation between the frame rate and the number of glyphs may be seen in figure H.1
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Figure H.1: The relation between the frame rate and the number of glyphs.

H.2.4 Discussion

The time to slice the glyphs in a scene is proportional to the number of glyphs in the scene.
The relation between the frame rate and the number of glyphs displayed in a scene is opposite propor-
tional, when the number of glyphs are doubled, the frame rateis halved.
As the results show, the navigation mode has a significantly higher frame rate than the high definition
mode, which means that the implementation of the navigationmode is a necessity for the usability of
the system.

H.3 Object perception

H.3.1 Purpose

The purpose of this test is to evaluate the degree of perception with the use of one glyph type, the
hourglass glyph.

H.3.2 Setup

Setup is on the hardware system described in the performancetest. The display device is a 3 by 4 meter
back projection screen.
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H.3. OBJECT PERCEPTION

Dimension Feature
X X
Y Y
Z Z
Cluster (W) Shape
none Pose
Z Sandheight
X Sand colour 1: Green
Y Sand colour 2: Red
X Head colour: Cyna
Y Foot colour: Magenta

Table H.3: The mappings used with the hourglass.

Two users with no previous knowledge of the used data set are chosen to participate in the test. The
data set used can be found on the accompanying CD-rom, entitled 2sphere.csv. The data set contains
100,000 records, distributed in 2 clusters.

The test is performed with 250 glyphs in the scene.

[Raja et al., 2004] define 6 different evaluations, of which we have chosen to use the five following.

1. One Axis Distance
One Axis Distance asked the subject to find the point with the highest Y value. This task tested their
ability to judge distances along one axis in the scatterplot. We felt this was an important basic task in
that it is a key component in gaining understanding of a single data point.

2. Two Axis Distance
Two Axis Distance required the subject to locate the point with the both the lowest X and lowest Y
value. We were concerned about the subjects ability to orient themselves so that they could compare
distances along two axes at once. This proved to be one of the more difficult tasks.

3. Trend Determination
Trend Determination required the subject to get a general sense of the layout of the data in order to
spot trends. Subjects were asked to report the trend in this format: as A increases/decreases, B in-
creases/decreases.

4. Clusters
The Cluster finding task asked subjects to locate clusters ofdata points greater than 20 points.

5. Single Point Search
The Single Point Search task had subjects locate a differently colored point in a densely packed group
of points. The point was not visible from the subject s starting position and required them to navigate
to find it. This task would be important in a real-world application where a data point is highlighted in
another view and must then be located in the VE view (e.g. a brushing-and-linking task).
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APPENDIX H. TEST

Mappings

H.3.3 Results

250 glyphs
Question 1
The two users quickly pointed out the glyph.

Question 2
The trend of different colours based on the XY coordinate wasquickly picked up.

Question 3
Again, colours based on the XY coordinate were quickly picked up, and the clustering in two groups
was seen. After a relatively long time, the it was discovered, that the shape represented the cluster.

H.3.4 Discussion

Determining the glyph with the largest Y component, which demonstrates, that the ability to understand
one data point is good. The trends were quickly spotted basedon glyph colour, which confirms that
colour is one of the most powerful and robust features in 3D visual data mining. The last question
demonstrated, that the shape of the hourglass glyph is not a very conspicuous feature.
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APPENDIX I
Class diagram
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