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Abstract

Knowledge about the illumination conditions in a real
world scene has many applications among them Aug-
mented Reality which aims at placing virtual objects in
the real world. An important factor for convincing aug-
mentations is to use the illumination of the real world
when rendering the virtual objects so they are shaded
consistently and cast consistent shadows.

This paper proposes two approaches to continuously
estimate the illumination conditions in a static outdoor
scene based on images from a single viewpoint of that
scene while using the scene itself as light probe. Thus,
no additional calibration objects are required. Experi-
mental results show that the proposed illumination esti-
mation is sufficient for Augmented Reality applications.

1 Introduction

Images are formed as a result of light interacting with
surfaces. The radiation emitted by a light source hits a
material’s surface under a certain angle where it is then
reflected, absorbed, and transmitted depending on the
material’s properties. The reflected light may hit other
objects causing interreflections, and one object may oc-
clude another object’s reflections or a light source re-
sulting in shadowing. When images are synthesized us-
ing computer graphics techniques it is important to have
good models of these interactions in order to achieve
realism. Similarly, when the images are real images ac-
quired with some form of camera it is paramount to un-
derstand how the image was formed in order to analyze
it using computer vision techniques. Generally, three
different elements come together in forming images: 1)
the 3D geometry of the scene, 2) the reflectance proper-
ties of the surfaces in the scene, and 3) the illumination
conditions in the scene. Given a model of all three ele-
ments it is possible both to render synthetic images and
to design robust computer vision techniques for analyz-
ing images of the scene.

The Laboratory of Computer Vision and Media Tech-
nology at Aalborg University, Denmark (CVMT/AAU)
has recently initiated a research project (CoSPE: Com-
puter Vision-Based Scene Parameter Estimation) which

lies on the border between computer vision and com-
puter graphics. The project focuses on estimating
the reflectance properties and the illumination condi-
tions in scenes based on images. For more informa-
tion about the project please visit the project’s web-site
www.cospe.dk

In this paper we present some initial results of this re-
search, namely two approaches to the same problem: to
continuously estimate the illumination conditions in a
static scene based on a sequence of images from a single
viewpoint. So far, the most commonly used approach
to scene illumination measurement/estimation has been
the so-called light probe, which is a reflective sphere
placed in the scene and photographed with a camera to
get an omni-directional measurement of light, [5, 8, 10].
None of the approaches presented in this paper require
any special purpose radiometric calibration objects to
be present in the scene. In fact one could say we are
proposing techniques that allow the scene to act as its
own light probe.

Real-time, continuous estimation of scene illumina-
tion conditions is really important for Augmented Real-
ity (AR) systems. Figure 1 shows an example of an AR
system where a virtual object has been rendered into
a real scene. The virtual object is rendered with illu-
mination conditions corresponding to the illumination
condition that are estimated for the real scene, so the
virtual object is shaded consistently with the scene, and
it also casts a consistent shadow on surfaces in the real
scene.

The application scenario we are targeting is a system,
be it an AR or a vision system, which needs to contin-
uously update its internal model of the illumination in
an outdoor scenario. Consider for example a computer
screen mounted on a pole at an archaeological site al-
lowing visitors to view the real scene (filmed with a
video camera) augmented with visualization of virtual
3D buildings that no longer exist. For such a system
the illumination conditions constantly change due to the
passing of time causing the sun to travel across the sky,
clouds causing partial or complete blockage of the di-
rect light from the sun, and changing the illumination
from the sky.

The approaches presented in this paper can estimate
the intensities and color of the direct sunlight and of the



Figure 1: Two images taken at different times (approximately one hour apart) on a sunny day with partial cloud
cover causing constant changes in the illumination conditions. With one of the methods proposed in this paper
we have automatically estimated the current illumination conditions and used this illumination estimate to render
a virtual sculpture into the scene.

indirect skylight. Additionally one method is able to es-
timate the direction of the sunlight relative to the scene,
whereas the other technique assumes that the system
knows the direction of the sunlight using date, time and
position information. The latter approach is more ro-
bust for cloudy conditions, whereas the former is more
readily applicable to a scene as there is less positional
and orientational calibration to carry out.

Both approaches involve an ”off-line” photometric
calibration phase where the reflectances (albedo) of dif-
fuse surfaces in the scene are estimated. After the once-
only reflectance calibration the approaches enable con-
tinuous ”on-line” illumination estimation.

This paper is organized as follows. In section 2
we give an overview of related work. Section 3 then
lists the assumptions behind the presented techniques,
and presents the illumination model used by both ap-
proaches (both approaches estimate the values of pa-
rameters in this model). In section 4 we then present
the approach which assumes availability of sunlight di-
rection information, whereas the approach which also
estimates sunlight direction is presented in section 5.
Conclusions are given in section 6.

2 State-of-the-art
Estimating scene illumination conditions from images
is the dual problem of estimating surface reflectance
properties, because the image represents light reflected
off surfaces, and this reflection is governed by the illu-
mination and the reflectances. Therefore illumination
estimation cannot be performed without knowledge of
surface reflectance. This is the reason all related work
is based on placing some kind of special purpose ob-
ject with a priori known reflectance properties in the
scene. For continuously operating AR or vision sys-
tems performing illumination estimation it is not a vi-

able approach to be forced to have calibration objects
in the scene. Therefore we have developed and tested
two approaches to estimate dynamic illumination con-
ditions based on the surfaces naturally present in the
scene. Subsequently we briefly describe some of the
most closely related work. Recent surveys on illumina-
tion estimation may be found in [9, 13].

One group of related work has a somewhat different
focus, namely that of estimating scene reflectances. Yu
and Malik proposed estimation of pseudo BRDFs1 for
outdoor scenes, [17]. The approach requires multiple
images of the outdoor scene taken from different view-
points and under differing illumination conditions. The
goal is to be able to re-render the scene under arbitrary
novel illumination conditions. Knowledge of scene il-
lumination is obtained by combining a parameterized
outdoor skylight model with light probe images.

Yu and Debevec proposed an inverse global illumi-
nation rendering approach, [16]. By using multiple im-
ages of all surfaces and a complete 3D model of an en-
tire indoor scenario, and by using knowledge of the illu-
mination conditions they demonstrate that it is possible
to estimate glossy BRDFs for all surfaces. Knowledge
of illumination conditions is obtained by manually mea-
suring the positions and emittances of all light sources.

Loscos and Drettakis proposed a system for interac-
tive re-lighting of indoor scenarios, [11]. Using a sin-
gle image of the scene, combined with a complete 3D
model of the entire room, and knowledge of the orig-
inal illumination conditions they are able to re-render
the scene under arbitrary novel illumination conditions.
The knowledge of the original scene illumination is
obtained by manual measurement of the positions and
emittances of light sources.

Boivin and Gagalowicz proposes an iterative global

1BRDF: Bi-directional Reflectance Distribution Function is de-
fined as the ratio of the reflected radiation to the incident radiation
on a surface.



illumination approach to estimating surface reflectance
parameters, [3, 4]. This work is also based on a single
image of an indoor scene, and assumes that the posi-
tions and emittances of the light sources are measured
manually.

Masselus and Dutre proposed an approach to image-
based modeling of surface reflectances with the aim of
being able to re-render under novel illumination condi-
tions, [12]. By acquiring multiple images from a sin-
gle viewpoint of a scene illuminated with a manually
moved single light source they were able to model the
reflectance field for re-lighting. The location of the
moving light source is computed for each image by a
triangulation technique based on the shading of four dif-
fuse spheres present at known locations in the scene.

Sato and Sato proposed a technique for estimation
of complex illumination environments, [15]. The tech-
nique requires that a known object is casting shadows
on a surface in the scene, and the reflectance of the
shadow receiver must be known. If this information
is not available the method requires an image of the
scene without the shadow casting object. In this case
the method cannot be applied to scenes with changing
illumination conditions.

Kanbara and Yokoya designed an approach to auto-
matic, real-time estimation of scene lighting for aug-
mented reality, [10]. The approach involves placing a
reflective sphere which is always in the camera’s field
of view. The dynamic scene illumination conditions are
estimated from the environment’s reflection in this spe-
cial purpose sphere.

Using reflective spheres has for several years been the
standard approach to acquiring omni-directional knowl-
edge of scene illumination. The approach has been
pioneered by Debevec and taken up by several other
for various purposes, including real-time AR systems
[7, 5, 6, 8]. The problem with using this approach for
continuously operating systems is that it requires high
resolution images of the reflective sphere, which has to
be placed in the scene.

As seen from the above brief review the standard ap-
proaches to determining scene illumination conditions
are either to manually measure the light sources, or to
photograph a reflective sphere placed in the scene. As
stated our goal is to investigate whether images of sur-
faces naturally present in the scene can be used for esti-
mating illumination, i.e., to determine if changing illu-
mination can be detected from a video sequence.

3 Background
This work is based on a number of assumptions, which
we will list together here. First of all our approaches
are targeted at daytime outdoor scenarios, allowing us
to assume that the illumination conditions are in effect
completely governed by light from a directional source
(the sun) and light from the sky hemisphere. In addition
we assume that the imaged scene is static, that a com-

plete 3D model of the scene is available, and that the
camera is internally and externally calibrated, such that
each pixel corresponds to a ray that can be traced to a
unique 3D point in the scene.

Additionally the presented techniques assume that
the scenes contain diffusely reflecting surfaces and that
different normal directions are represented by these dif-
fuse surfaces. We use the approach that the 3D model
of the scene is manually annotated with information
about which surfaces can be considered diffuse reflec-
tors. As described in section 1 the techniques involve
a reflectance calibration phase, and it is assumed that
surface reflectances do not change after this calibration
phase. This means that precipitation is not allowed, i.e.,
it is not allowed to rain or snow after reflectance cali-
bration.

Both presented techniques are based on an assump-
tion that the Phong Illumination Model can be used as a
reasonable approximation to outdoor illumination con-
ditions, and finally one of the techniques further as-
sumes that the direction of the sun light is known at
all times, computed automatically based on knowledge
of date, time, and the camera’s position in latitude and
longitude.

In order to estimate the illumination conditions of a
scene from 2D images of that scene a model of the im-
age formation process is needed that describes the in-
teractions between light and surfaces. Such a model
requires the reflectance properties of the surfaces in the
scene as well as a 3D description of the scene. Given
a sufficient number of surfaces of different orientations
it is then possible to set up a system of equations and
solve for the variables describing the illumination con-
ditions.

The remainder of this section describes an illumina-
tion model and the acquisition of reflectance properties.
As stated we assume that the scene can be measured
and modeled manually, using for example 3D Studio
Max or similar 3D modeling software.

3.1 Phong Illumination Model
The Phong Illumination Model [14] is a local illumi-
nation model that is often used in computer graphics
because it is fast to compute and gives reasonably real-
istic results although it is largely an empirical model. It
is called a local illumination model because interreflec-
tions between surfaces are not considered. Interreflec-
tions – also known as global illumination effects – are
approximated with an ambient term that allows for a
global control of brightness in a scene. Besides the am-
bient term the Phong Model is composed of two reflec-
tion components that are due to direct illumination on
a surface: a diffuse and a specular term. Diffuse re-
flections scatter light equally in all directions, i.e., the
intensity at a point on a surface does not depend on
the viewing direction. The diffuse reflections are mod-
eled with Lambert’s cosine law which states that the
reflected light is proportional to the cosine of the an-



gle between the surface normal and the incident light
θi. The specular reflections depend on both the incident
angle θi and the viewing angle θr, and may be modeled
as proportional to the cosine of the angle α, see figure 2.
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Figure 2: Image formation components of the Phong
Illumination Model. L is a unit vector in the direction
to the light source, N is the unit surface normal, V is
the viewing direction, and R is the mirror-like reflected
light.

The illumination of an outdoor scene may be mod-
eled by one direct light source, the sun, and ambient
light representing the skylight. The reflected light Ir
approximated with Phong’s Illumination Model is then
given by the following equation:

Ir,l = ka,l·Ia,l+Ii,l ·(kd,l·cos(θi)+ks,l·cos(α)m) (1)

where ka, kd, and ks are the reflection coefficients for
the ambient, diffuse, and specular components, respec-
tively, also called albedos which are described in the
next subsection. Ia is the ambient illumination, Ii the
direct light source, and m is a factor controlling the
shininess of the surface. To handle color there is a sep-
arate equation for red, green, and blue, therefore the
subscript l ∈ {R,G,B}.

In the following we assume pure diffuse surfaces and
that ka = kd. Equation 1 then becomes:

Ir,l = kd,l · (Ia,l + Ii,l · cos(θi)) (2)

or using the vectors from figure 2:

Ir,l = kd,l · (Ia,l + Ii,l · ( ~N • ~L)) (3)

3.2 Reflectance Properties
The reflectance properties of the surfaces are needed
when using the scene as light probe. In the Phong Il-
lumination Model (eq. 3) the reflectance properties are
modeled with the scalar kd. This is often called the
albedo which is the reflectivity of a surface, or in other
words the ratio of radiation reflected to the amount inci-
dent upon it. The reflected radiation may be expressed
by the radiometric term radiance Le which is the power
leaving a surface per unit solid angle2 and per unit sur-
face area. The radiance can be measured using an image
of a scene.

2The solid angle is the angle that, seen from the center of a sphere,
includes a given area on the surface of that sphere. The value of the
solid angle is numerically equal to the size of that area divided by the
square of the radius of the sphere. It is measured in steradians [sr].

The radiometric term describing the received power
per unit area, i.e., the power falling onto a surface, is
the Irradiance Ee. For pure diffuse surfaces the albedo
is then:

kd =
Le
Ee

(4)

While it is rather easy to obtain the radiance from a
scene using an image, the irrandiance requires knowl-
edge of a 3D model of the scene and the light sources.
One way to calculate the irrandiances for every pixel is
then to synthesize (render) an image using the 3D model
and setting all surface albedos to one.

4 Illumination Estimation under
known Sun Position

In this first approach we take the illumination model
presented in the previous paragraph and use it to model
the measured pixel intensities from an image of the
scene. If it is assumed that the system continuously can
compute the unit direction vector to the light source rel-
ative to the scene coordinate system, then we arrive at
a set of equations, one for each color channel for each
pixel. These equations are linear in the ambient and the
direct light, Ia,l and Ii,l, respectively.

4.1 Approach
Let subscript j refer to the jth 3D point in the scene.
Some points will in fact be in shadow and not receive
direct light from the sun. Let Sj be a boolean parameter
of value 1 if the jth point is in direct light, and 0 if
it is in shadow. Furthermore, let Cj be a real number
between 0 and 1, with the value of 1 if the jth point
receives light from the entire hemi-spherical sky, and
0 if the sky is completely occluded seen from the jth
point. The reflected light from the jth point can then be
written as (the scene is small compared to the distance
to the sun, so the unit direction vector to the sun is the
same for all points in the scene):

Ir,j,l = kd,j,l · (Cj · Ia,l + Sj · Ii,l · ( ~Nj • ~L)) (5)

The ambient occlusion factor, Cj , can be computed
a priori for all points in the scene. Given knowledge
of the sun’s position the shadow masking parameter Sj
can be computed at run-time for all points in the scene.
From the offline reflectance calibration we know the
albedos, kd,j,l, of all diffusely reflecting points. The
surface normal for all points, Nj is known from the 3D
model of the scene. The direction vector to the sun, L,
can be computed given: 1) the date, 2) the time, 3) the
Earth position in latitude and longitude of the scene ori-
gin, 4) and the direction of North in the scene, [1]. The
only unknowns in eq. 5 are the 6 parameters for ambient
and direct light, Ia,l and Ii,l.



Figure 3: Frames 0, 29, 59 and 89 from synthetic test sequence with known illumination changes. The direction
of the direct light source is not changing but the ambient and source emittances both change over the sequence.
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Figure 4: Comparison of estimated and true values for direct and ambient radiances for the synthetic test sequence
shown in figure 3. All values are normalized to a maximum of 1.

Using the assumption that we know what surfaces in
the scene can be considered diffuse and that the camera
is calibrated to the scene we can also find those pix-
els that correspond to diffuse surfaces. The RGB pixel
values of such a pixel is denoted Pj,l. If the camera
is radiometrically linear the measured pixel values are
some camera constant K times the reflected radiance
from the corresponding scene point:

Pj,l = K · Ir,j,l (6)

Thus, by picking pixels from the image we can set up
a system of linear equations in Ia,l and Id,l of the form:

1/K ·Pj,l = kd,j,l · (Cj · Ia,l +Sj · Ii,l · ( ~Nj • ~L)) (7)

In our implementation of this framework we at ran-
dom select on the order of a few hundred pixels evenly
distributed across the image (among those pixels that
correspond to diffuse surfaces). It is important that the
pixel population represents both areas in shadow (only
ambient light) and in direct light (both ambient and di-
rect light). The camera scene radiance to pixel value
scaling factor K is of course unknown, but a system of
equation of the form of eq. 7 allows us to estimate scene
illumination up to a scaling factor.

4.2 Experiments and Results

The presented framework has been tested extensively
on both synthetic and real images. Figure 3 shows a few
frames from a synthetically generated sequence where
a simple scene has been rendered with known ambi-
ent and direct intensities. Correspondingly, figure 4.1
shows the estimated intensities. As seen synthetic data
results in near perfect estimations. The same scene has
been tested with generating a sequence where a yellow
ball is falling into the scene and bouncing out again in
order to test how the illumination estimation procedure
reacts to dynamic objects in the scene, thus violating
the static scene assumption. The estimation results from
this scenario is not shown, but due to the extraction of
a large number of sample points across the entire im-
age the illumination estimation is very stable and only
in minor degree affected by the dynamic object.

To test the approach on real data a 2 hour time-lapse
sequence has been acquired with one frame every 20
seconds. Figure 5 shows select frames from the se-
quence. Naturally, we do not have ground truth data
for the illumination conditions in this real scene, but
figures 4.2 and 4.2 show the estimated ambient and di-
rect light. The estimated illumination has been verified



Figure 5: Frames 1, 72, 134, 201, and 259 from real test sequence covering approximately 2 hours of moving sun
and changing cloud cover.
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Figure 6: Estimated values for ambient radiance for the real test sequence shown in figure 5. Notice that the
ambient light in the scene has a relatively low red (R) component as is expected for a sky with only partial cloud
cover.

quantatively by taking the known albedos of surfaces
in the scene, illuminating these surfaces with the esti-
mated light and comparing these values with the real
sequence pixel value for the same surface. These tests
(not shown) demonstrate that the estimated illumina-
tion follows the real scene illumination quite accurately
apart from a tendency to over-estimate the red compo-
nent of the direct light with approximately 10%. This
may be caused by mis-estimating the albedo of the dom-
inant red brick wall due to an in-accurate determation
of the illumination conditions at time the image was ac-
quired for albedo estimation.

In addition to quantitative tests on real data qualita-
tive tests of the estimated illumination has been evalu-
ated by rendering virtual objects into the scenes and vi-
sually judging the quality of the virtual shading. Espe-
cially for sequences with very dynamic lighting condi-
tions it is clearly seen that the estimated light results in
consistent shading of virtual objects. Two frames from
such a test were shown in figure 1.

The current implementation of this estimation tech-
nique can run the estimation at about 10 frames per sec-
ond and is thus easily able to respond to the illumination
condition changes an outdoor AR system would experi-
ence.

5 Illumination Estimation under
unknown Sun Position

This section describes the estimation of the illumination
conditions including the sun direction from an image of
a scene given a 3D model of the scene and the albe-
dos of the surfaces in the scene, and assuming that the
illumination model in equation 2 can be used to approx-
imate outdoor illumination conditions.

5.1 Approach

The illumination conditions may be estimated by set-
ting up a sufficient number of equation 3, and solving
this non-linear system of equations for the unknowns
~L, Ia,l, and Id,l (l ∈ {R,G,B}). Thus, there are nine
unknowns. Assuming that the distance r to the sun is
known the estimation of ~L reduces to the two angles
(azimuth, ϕ, and zenith, θ). In order to solve a non-
linear system of equations one may formulate it as a
least squares problem and then use a numerical opti-
mization. Let fi(x) be the minimization function that
should converge to zero. The minimization function for
the Phong Illumination Model is given in equation 8:
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Figure 7: Estimated values for direct radiance for the real test sequence shown in figure 5.

fj,l(x) = kd,j,l(Ia,j,l + Id,j,lcos θj)− Ir,j,l = 0 (8)

where

cos θj =

{ 0 , θ > π/2
~Nj • ~L
‖ ~Nj‖·‖~L‖

, 0 ≤ θ ≤ π/2 (9)

and

~L =




r · cosϕ · sin θ
r · sinϕ · sin θ

r · cos θ


 (10)

5.2 Experiments and Results
The evaluation of computer vision methods using real
image data is often difficult due to the lack of ground
truth. In this work the estimation of a 3D model
and of the albedos introduces an error which makes
the evaluation of the illumination estimation inaccu-
rate. Therefore the main evaluation was done using
synthetic image data that were generated from a 3D
scene description including light positions and object
reflectances. They were rendered using a ray-tracer
(Radiance [2]) that generates radiometric correct im-
ages including global illumination effects. Radiance
supports all kinds of light sources among them a day-
light model to create realistic illumination in outdoor
scenes with sun and skylight. Figure 8 shows an exam-
ple of a rendered image that was used for evaluation.

All estimations were done using MATLAB’s lsqnon-
lin for solving non-linear least squares problems.

Using the daylight model images were rendered for
illumination conditions from sunrise to sunset. The es-

Figure 8: Synthesized image using the daylight model.

timation errors are shown in figure 9. In most of the es-
timations the error lies around a few degrees [0.6−2.5◦]
except from three estimations, which are at 9, 9:30 and
17 o’clock. With a look at the image of these time peri-
ods it can be seen that some of the measurement pixels
were occluded resulting in no direct illumination.

These estimation tests have been extended with sun
positions across the entire hemisphere. The azimuth
ranges [0 → 2π] and the zenith ranges [0 → 1

2π]. All
in all 339 images have been rendered in Radiance. The
scene illustrated in figure 8 has also been used in this
experiment.

The error in these experiments are given as the total
angle between the estimated and actual angles. Total
error means the two actual angles (azimuth ϕ and zenith
θ) seen in relation to the two estimated, which has been
calculated from equation 11.

∆E = arccos

(
~a • ~e
|~a||~e|

)
(11)

The two vectors for actual (~a) and estimated (~e) are
calculated from equation 12, where r = 1 since it is
only the angular difference that is of interest.
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Figure 9: Estimation error in degrees as a function of
the time for azimuth (ϕ) and zenith (θ) respectively.

~a =




r · cosϕ · sin θ
r · sinϕ · sin θ

r · cos θ


 (12)

The total angular error for all azimuth and zenith an-
gles of the sun is shown in figure 10 where the error
is indicated by the height of the small circles. The az-
imuth angle is given as the angle in the plan, and the
zenith is zero in the center of the plot and increasing
with distance to the center.
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Figure 10: Total angular error over all azimuth and
zenith angles.

The camera viewing direction is indicated by the
green line around the an azimuth angle of 90◦. It can
be seen that the error is rather low when the illumina-
tion direction is close to the camera direction, whereas
the error increased significantly (up to 80◦) when the il-
lumination is opposite to the camera. This is due to the
reduced number of directly illuminated surfaces.

Besides simulated image data we tested the method
on real images of building bricks. These bricks have
rather diffuse reflectance properties. Figure 11 shows
an image of a real scene that was used for illumination

estimation, and figure 12 show a part of that scene with
a virtual shadow that was simulated using the estimated
illumination direction.

Figure 11: Real image used for illumination estimation.

Figure 12: Real scene showing both, the real shadow
casted by the brick and a virtual shadow casted by the
brick. The virtual shadow is rendered using the esti-
mated sun position.

Figure 13 show an example application where the es-
timated illumination direction was used to augment the
scene with four virtual vases.

6 Conclusions
In this paper two methods were proposed and tested to
estimate the illumination conditions of a real outdoor
scene while using the scene itself as a light probe, i.e.,
no additional light probe has to be placed into the scene.
The methods work on single view images and require a
3D model of the scene as well as the reflectance proper-
ties of the surfaces present in the scene. The preliminary
results show their applicability to Augmented Reality.

In future work we aim at combining several comple-
mentary methods in order to achieve more robust illu-
mination estimation. Furthermore, we will look into
possibilities to reduce the offline calibration, e.g., us-
ing reflectance models for common everyday outdoor
objects. These objects may be recognized by some au-
tomatic object recognition and be used as light probes.



Figure 13: Real scene augmented with virtual vases.
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