
1

Design of an Intelligent Intensive Care Unit Alarm
System

Stephen Schreiber Aaes∗ Mikkel Sandberg Andersen∗ Tommy Bitsch∗ Sanne Christensen∗

Tommy Jensen∗ Rikke Ottesen,∗ Jan Tvorup∗

∗Aalborg University
Department of Health, Science and Technology

Abstract— The Intensive Care Unit (ICU) accommo-
dates the most severely ill patients in a hospital. These
patients are monitored by several medical devices, e.g.
ventilators and gas monitors. All of these devices function
autonomously giving individual alarms. As a result alarms
are often triggered unnecessarily, e.g. in the event of a
probe failing, even though another device may measure
that the patients condition is unchanged. This article in-
vestigates the possibility of processing alarms intelligently
through the development of a system, that is capable of
evaluating alarms based on data from several medical
monitoring devices. This involves detecting equipment
failure alarms, trend alarms, and threshold alarms. Fur-
thermore, it is desirable for the hospital staff to be able
to monitor the patient from any location in the hospital.

The emphasis of this article is on developing a mon-
itoring system, providing a network of distributed data
collection units, and the ability to monitor measurements
and alarms from any given location within the network.
The system is comprised of three parts: A bedside unit
for each patient, multiple independent monitoring units,
and a central data repository. The bedside unit collects
data from medical devices monitoring the patient. This
data is distributed via TCP/IP to all connected monitoring
units and the central data repository. The monitoring
unit has three central components: The discovery, the
graphical user interface (GUI), and the alarm compo-
nent. When started, available bedside units are discovered
through multicasting. When connected to a bedside unit
the monitoring unit displays the collected data and alarms.
The central data repository stores measured data from
the medical devices connected to the bedside units. The
resulting design has proven successful in evaluating alarms
based on data from several medical monitoring devices.
Test cases show that the design can differentiate the
three different alarm types. The design has also proven
successful in distributing the measured data from one
bedside unit to multiple monitoring units.

This article demonstrates the possiblity of generating
intelligent alarms in an ICU by implementing a distributed
system, with a bedside unit for each patient and a self-
contained monitoring unit. The flexibility of the system
can be expanded considerably by implementing XML as

the data exchange format between nodes in the system.
Furthermore, more advanced alarm types, e.g. decision
support systems, can be implemented.

Index Terms— Intensive Care Unit, Network, Relational
Databases, Distributed System, Multicast, Monitoring sys-
tem, Java.

I. INTRODUCTION

The Intensive Care Unit (ICU) in hospitals accom-
modates the most severely ill patients. Because of their
condition, patients in these units are monitored carefully
using several monitoring devices. Furthermore, a nurse
is always present at bedside to respond to alarms. As
alarms are not coordinated with respect to measurements
by other devices which collects and analyses data au-
tonomously they can be unnecessary.

An unnecessary alarm may occur when a pulse-
oxymeter probe fails, an alarm will be given signaling a
cardiac arrest, even though another device may measure
that the patient is still breathing and blood pressure
is within acceptable bounds. With each patient being
monitored by several devices these equipment failure
alarms are more likely to occur. In one study, alarms
in an ICU ward were logged over a duration of 3 weeks.
Out of 1455 alarms only 8 alarms were classed as
indicating a potentially serious problem. This points out
that “a high false alarm rate may distract the attendants
attention from an important alarm, as well as making
unnecessary noise close to the patient” [1]. Furthermore
it is not possible to detect a worsening condition of a
patient, e.g. by the use of trend alarms. Making use of
these would enable the staff to react on a worsening
condition.
An example of a set-up in a thoracic ICU ward can be
seen in figure 1.

The aim of this study is to investigate the possibility
of processing alarms more intelligently through the de-
velopment of a system that evaluates alarms based on



2

Fig. 1. A set-up in a thoracic ICU ward.

measured data from all monitoring devices connected
to the patient. Additionally, monitoring the patient data
from a remote location is desirable. This enables the
doctor to keep up to date on a patient’s condition,
without being able to be physically present on the ward.
This entails providing the possibility of viewing data
simultaneously from several different locations. Due to
the fact that the system involves a processing unit by
each bed, it can be designed as a distributed system.

In the system, intelligent alarms involve detection of
three alarm types. Threshold alarms, which are often
acute alarms, are triggered when a threshold value is
exceeded. Equipment alarms are triggered when a probe
or a device fails, while data from other devices indicate
that the patients condition is unaltered. Trend alarms are
triggered when the patients condition has worsened over
a period of time. To observe a patients condition over a
period of time, collected data must be stored. For each
patient and device setup, alarms should be customisable
due to the fact that different patient conditions require
different threshold settings and device setups. For ease
of configuration of device-setup, it is desirable to be able
to load a profile, defining standard threshold-, and trend-
alarm settings for a given patient condition. Furthermore,
the system must provide for saving a customised profile
for a specific patient. To prove the concept of this study
two standard profiles are used: Coronary Artery Bypass
Grafting (CABG) and Chronic Obstructive Lung Disease
(COLD).

A detailed description of the methods for designing
the system will be given in the following section.

II. METHODS

A. System overview

The background knowledge for this article has been
researched by interviewing a registered nurse at the
Thorax Intensive Care Unit (ICU), Aalborg Sygehus Syd
and the ICU chief physician at Aalborg Sygehus Nord.

The emphasis of this article is on developing a moni-
toring system, providing a network of distributed data
collection units, the bedside units, and the ability to
monitor measurements and alarms, the monitoring units,
from any given location within the network.

Fig. 2. Overview of the system.

The Intelligent Intensive Care Unit Alarm system
(IICUA) system is comprised of three parts: A bedside
unit for each patient, multiple independent monitoring
units, and a central data repository. All parts commu-
nicates through an Ethernet network. The system is
illustrated in figure 2. The bedside unit collects data
from medical devices monitoring the patient. This data is
distributed via TCP/IP to all connected monitoring units
and the central data repository. The monitoring unit has
three central components. The network communication
unit, which detects the available bedside units through



3

multicasting and transfers measured data. The alarm,
which determines whether an alarm should be triggered.
The graphical user interface (GUI) unit, which displays
data and alarms. When connected to a bedside unit the
monitoring unit displays the collected data. Furthermore
it displays the three alarm types, listed by priority in
descending order: threshold-, equipment-, and trend-
alarms. The central data repository consists of a database
in which patient profiles and measured data from the
medical devices connected to the bedside units is stored
for later clinical use.

In the following sections the details of the system will
be described.

B. Bedside unit

The purpose of the bedside unit is to acquire con-
tinuous medical data from the patient and in real time
distribute this data to different targets. These targets are
one or more monitoring units, which displays the data
and processes alarms, and the central data repository
which records the data. Additionally the bedside unit
calculates trend alarms. The trend alarms calculations
are placed in the bedside unit to minimize load on the
monitoring unit. The bedside unit runs on a computer
connected to the ICU-equipment for each patient. There
is one bedside unit for each patient, each patient has
a personal ID, and a bedside unit can handle only one
patient at a time. When a bedside unit is started, the user
is prompted for a patient ID (PID) as to identify the unit
on the network, and as an ID when storing medical data
in the central data repository.
The bedside unit is implemented using Java.

A class diagram of the bedside unit can be seen in
figure 3.

1) Device manager: The device manager is the class
that handles the connection to the ICU-equipment. The
purpose of the device manager is to act as a transitional
layer between the ICU-equipment and the rest of the
bedside unit. The device manager handles specific drivers
for each medical device connected to the system. The
current system uses modified versions of the device
drivers for the Brüel & Kjær 1304 and the Siemens Servo
300 developed in the ICUMatic project [2].

The class Device is a superclass for all device drivers,
providing generic functions like connect and disconnect.
All device drivers must extend this class in order to be
recognized by the device manager. The device manager
controls all instances of device drivers, allowing these
to update the measurements in the datastructure called
Patient, see section II-D.

2) Connection pool: The connection pool is the part
of the bedside unit that handles all network communi-
cation to and from the bedside unit. This includes the
multicast discovery and the distribution of the data ac-
quired through the device manager to connected external
devices, such as the monitoring unit. The network com-
munication is accomplished through sending serialized
objects between nodes. The communication is described
in details in section II-D. When the ConnectionPool class
is instantiated, a thread handling the multicast discovery
is created. When a TCP/IP connection is requested a
server-thread is created, listening for connections on a
port. After establishing TCP/IP connection, the server-
thread will create a separate thread for this connection as
not to block the server for further connections. A runtime
example of the bedside unit can be seen in figure 4.

Bedside unit

Connection Pool

Connection 1

Connection 2

Monitoring unit 1

Monitoring unit 2

Multicast

Fig. 4. A runtime example of the processes in the connection pool
with two monitoring units connected.

3) Trend alarms: The trend alarms are based on the
history of a patients condition. The trend-alarms requires
templates in order for them to work. These templates
are recorded signals of the patient in a stable condition.
Through the GUI the user will be prompted to record
these templates. When the user requests a trend-template
to be recorded the measured signal is processed and
stored as a template in the central data repository. This
enables the alarm handler in the monitoring unit to
execute trend alarm calculations with a specified time
interval.

The trend alarms are implemented using cross corre-
lation [3]. Signals are said to be correlated if the shapes
of the waveforms of the to signals (x(n), y(n)) are
correlated as defined by the cross correlation coefficient
as defined by equation 1.

σXY =

1

N

N
∑

n=1

x(n)y(n)

√

√

√

√

1

N

N
∑

n=1

x(n)2

√

√

√

√

1

N

N
∑

n=1

y(n)2

(1)



4

1

1..*
1..*

1 1

1

1 1

1

1

1

1..*

11

DeviceManager

MulticastUIConnection

ConnectionPool

Device

TrendAlarms Database

Bedunit

+Patient
+Profile
+Alarm

Fig. 3. A class diagram describing the structure of the bedside unit.

The cross correlation is implemented using a template
signal recorded from the patient when the patient is
stable. The template signal is used as reference signal
to all incoming signals. A flow diagram for obtaining
the template is seen in figure 5.

Fig. 5. Flowdiagram showing how the template is obtained.

In order to determine the cross correlation coefficient
of the two signals, they must be aligned. The alignment is
performed by finding the period of the signals and time-
shift the signals. The periods of the signals are calculated
using autocorrelation. The autocorrelation is defined by:

Rxx =

√

√

√

√

1

N

N
∑

n=1

x(n) ∗ x(n + k) (2)

Using cross correlation on signals with same fre-
quency but different amplitudes results in the signals
being correlated. This problem is compensated for by
calculating the mean value of the difference in amplitude
between all samples. Comparing this figure to the highest
amplitude gives an estimate as to how well the signals
match. The priority level of the trend alarms is 1.

A flow diagram for the cross correlation is seen in
figure II-B.3.

C. Monitoring unit

The monitoring unit has three main functions: Dis-
playing the patient data, triggering alarms, and disabling
alarms. There can be several monitoring units connected

Fig. 6. Flowdiagram showing the cross correlation.

to a given bedside unit. This means that a monitoring
unit can show the data for a patient in the same room
as the patient. At the same time there can be another
monitoring unit, at another location within the hospital,
connected to the same bedside unit, showing the same
data, see figure 2 in section II-A. The monitoring unit
runs on a computer connected to the same network as the
bedside unit. The advantage of this separation between
the bedside unit, that gathers the data, and the monitoring
unit that displays it, is that it is possible for a doctor to
view his patient from anywhere in the hospital that is
connected the network.
The monitoring device is implemented using Java.

A class diagram describing the structure of the moni-
toring unit can be seen in fig. 7.

A monitoring unit is not as a standalone program.
In order for it to perform its function, it needs to be
connected to a bedside unit, providing it with data from
a patient. When connected to a bedside unit the user will
be prompted to do one of two things: Select a standard
profile or a customized profile for the patient. The latter
will only be available if a customized profile has been
created. The adjustment of a profile is achieved by
retrieving the patients personal profile from the database
and modifying the values. The profile is described in the



5

1 1

1..*1
1 1

11

Alarms
MonitoringUnit

+TrendTab
+MainWindowFrame
+InstantaneousDataFrame
+ProfileTab
+LogFrame
+LoadProfileDialog
+TrendAndProfileFrame
+Alarm
+Profile
+Patient

Database

UIConnection

Multicast

Fig. 7. A class diagram describing the structure of the monitoring unit.

extended markup language (XML).

1) GUI: The GUI displays data received from the
bedside unit, and alarms. A screenshot can be seen in
fig. 8.

Fig. 8. A screenshot of the monitoring unit.

The GUI consists of three internal frames. The upper
frame, instantaneous, in which alarms and the continu-
ous measurements from the bedside unit are displayed.
Alarms are displayed as a flashing frame with a color
representing the alarm type, red for threshold alarms,
orange for trend alarms, and black for equipment alarms.
The middle frame, trendgraph and profile editing, in
which graphs displaying the trends for a number of
measurements, and the current profile settings can be
displayed. The lower frame, log, in which detailed in-
formation about alarms are printed, e.g. alarm type and
the time the alarm was triggered.

2) Alarm handler: The purpose of the alarm-handler
is to evaluate the data it is receiving from the network
communication, and trigger an alarm if any alarm criteria
is met. For each patient there is an individual profile
saved, the values in this having been adjusted by the
user. When the alarm handler is initialized it determines
whether a profile has been created for the patient. If no
profile exists the user is prompted to create one via the
GUI. Both profiles containing the threshold limits and
the equipment alarm definitions are defined in XML.

The following XML example shows an equipment
alarm triggered when the pulse oxymeter fails while
respiration persists.

<alarm>
<type>equipment</type>
<name>pulse oxymeter failure</name>
<condition>

<data>
<lost>pulse</lost>
<exists>respiration</exists>

</data>
</condition>
<fails>pulse</fails>

</alarm>

The following XML example shows an excerpt of a
profile for a patient with patient ID (PID) 100479-3165.

<profile time_stamp=
"Thu Dec 04 12:42:11 CET 2003">

<pid>1004793165</pid>
<type>COLD</type>
<heart>

<bpmap>
<lower>63</lower>
<upper>70</upper>

</bpmap>
<pulse>

<lower>30</lower>
<upper>90</upper>



6

</pulse>
</heart>

</profile>

When the criteria for a threshold alarm is met. The
alarm handler determines if the alarm should be classi-
fied as an equipment alarm by evaluating all available
equipment alarm definitions. If none of these are met,
the alarm is classified as a threshold alarm.

3) Alarm types: The system is implemented with
three types of alarms, threshold-, equipment- and trend-
alarms. Each alarm has its own alarm level according to
the priority of the alarm. The priority levels decides in
which order alarms are processed in the alarm handler
and are based on an interpretation of the importancy of
the alarms. The priorities are denoted with priority 1 as
the lowest priority.

Threshold alarms The threshold alarms are based on
the threshold values in a profile. The threshold values
are defined in a XML document. The priority level of
the threshold alarms is 3.

Equipment alarms The equipment alarms are based on
logical operations performed on the acute alarms. It can
be assumed that an equipment alarm should occur if the
blood pressure is constant but the patient has no pulse.
The priority level of the equipment alarms is 2.

4) Network communication: The purpose of the net-
work communication is to enable the communications
described in section II-D. To satisfy this, the monitoring
unit, when started, establishes a multicast thread. When
a bedside unit acknowledges a data transfer connection
the monitoring unit creates a thread handling the TCP/IP
connection.

D. Communication

The network communication in the system can
be classified as either multicasting- or data transfer-
communication.

1) Multicasting: To provide communication between
the bedside unit and the monitoring unit in the discovery
phase, multicasting [4] has been chosen. For this a
simple protocol has been developed. An example of a
monitoring device being connected to the network and
requesting connection with a bedside unit can be seen in
figure 9.

The data transmitted via multicast is encapsulated in
the datastructure shown in fig. 10.

When a monitoring unit is initialized it immediately
starts searching for bedside units. This is done by
sending an initialization [INIT] message to the multicast
group with no recipient address. When receiving this
message a bedside unit will issue an initialization ok

TIME TIME

Message = INIT
From = 192.168.1.2

To = null

Message = INIT_OK
From = 192.168.1.1

To = 192.168.1.2

Message = CONNECT
From = 192.168.1.2

To = 192.168.1.1

Message = CONNECT_OK
From = 192.168.1.1

To = 192.168.1.2
Server port = 25000

Bedside unit
IP: 192.168.1.1

Monitoring unit
IP: 192.168.1.2

Fig. 9. The multicast connection sequence between a monitoring
unit and a bedside unit.

-message : String
-toAddress : InetAddress
-fromAddress : InetAddress
-cpr : String
-unitName : String
-serverPort : int
-noConnections : int
-maxNoConnections : int
+INIT : String
+INIT_OK : String
+CONNECT : String
+CONENCT_OK : String

Administrative

Fig. 10. The datastructure used for multicast discovery communi-
cation.

[INIT_OK] message to the multicast group, to indicate
its presence on the network and that it is ready to receive
a data transfer connection. To ensure that the reply is
detected by the sender of the initialization message the
bedside unit specifies the recipient address. Additionally
the fields describing the bedside units name, number of
current connections and the patients PID is filled in.
When establishing a connection between a monitoring
unit and a bedside unit, the monitoring unit will issue
a connection message [CONNECT] with the address
of the bedside unit specified. Upon reception of this
message the bedside unit will issue a connection ok



7

message [CONNECT_OK] and specify a serverport for
the monitoring unit to connect to.

2) TCP/IP connection: To provide data transfer com-
munication between a bedside unit and a monitoring unit
the datastructure shown in figure 11.

Patient

-fiO2 : Double
-fiCO2 : Double
-feO2 : Double
-feCO2 : Double
-spO2 : Double
-pulse : Double
-respRate : Double
-vti : Double
-vte : Double
-peep : Double
-pip : Double
-ie : Double
-timeStamp : Date

Fig. 11. The datastructure used for TCP/IP data transfer communi-
cation.

E. Central data repository

The central data repository is implemented as a
database which stores the information of each patient
centrally. The data saved on the server are all collected
data for all patients in the system. The data are saved
for a predefined period of time after it is recorded. This
data can be used in retrospective clinical applications.
Each patients customized profile and customized alarm
are also saved on the server, as well as all the different
pre-customized profile-types and the default profiles. By
having all the patient-data centrally on a server the
system enables the user to freely move the monitoring
unit to any location without having to reconfigure the
customized profiles. Additionally, storing all patient data
centrally will enable the user to exchange any bedside
unit without loosing recorded data, e.g. in the case of a
defective bedside unit.

The database is implemented by a MySQL server.

III. TESTING THE FINAL DESIGN

To evaluate the system the following four test cases
were deployed.

A. Connection, display and distribution

Purpose: To verify the functionality of the network
discovery and -communication and to verify that multiple
monitoring units can connect to a single bedside unit.

Setup: The test setup was comprised by a Brüel &
Kjær 1304 Anesthetic Gas Monitor (B&K1304) and a

Siemens Servo 300 ventilator (Servo 300) connected via
RS232 to a PC running the bedside unit software and the
monitoring unit software (PC 1). Additionally a separate
computer with the monitoring unit software was used
(PC 2). During the test a test person was wearing a pulse-
oxymeter probe and a mask connected to the Servo 300
with a capnograph lead to the B&K1304.

Procedure: The bedside unit software was started on
PC 1, when ready the monitoring unit software was
started on PC 1. It was observed if the monitoring unit
listed the available bedside unit. If the unit was listed,
a connection was made to it. It was observed whether
the monitoring unit displayed correct data collected from
the two connected medical devices. To test with multiple
monitoring units, PC 2 with the monitoring unit software
was connected to the bedside unit running on PC 1. It
was observed whether the correct data was displayed.
The test would be satisfied if the network discovery and
-communication functioned correctly, and that several
monitoring units could connect to a single bedunit.

Results: It was observed that the monitoring unit listed
the available bedside units after having been intialised
and that a connection to the bedside unit was made.
Furthermore it was observed that the data was obtained
correctly by the monitoring unit and was shown in
the appropriate areas of the graphical user interface.
When connecting more than one monitoring unit the data
was successfully distributed to all connected monitoring
devices.

B. Threshold alarm

Purpose: To verify that exceeded threshold limits
as set in a patient profile are detected by the system.
Secondarily to verify that alarms are displayed correctly
on the monitoring unit.

Setup: A B&K, 1304 connected to a PC running both
a bedside unit and a monitoring unit. During the test a
test person was wearing a pulse-oxymeterprobe and a
mask with at capnograph lead.

Procedure: The test person hyperventilated to raise
the respiratory frequency above 16 breaths/min. It was
observed whether a threshold alarm was displayed on
the monitoring unit. The test would be satisfied if, when
the respiratory frequency was above 16 breaths/min, a
threshold alarm would be displayed on the monitoring
unit.

Results: It was observed that the system triggered and
displayed a threshold alarm when the test person was
hyperventilating, raising the respiratory frequency above
16 breaths/min.



8

C. Equipment alarm

Purpose: To verify that the system is able to detect an
equipment failure.

Setup: A B&K1304 connected to a pc running both a
beside unit and a monitoring unit. During the test a test
person was wearing a pulse-oxymeterprobe and a mask
with at capnograph lead.

Procedure: The pulse-oxymeter probe was discon-
nected. It was observed whether an equipment alarm
was displayed on the monitoring unit. The test would
be satisfied if an equipment failure alarm would be
displayed in the pulse field on the monitoring unit.

Results: It was observed that the system detected a
disconnected probe and that an alarm was shown on the
monitoring unit.

D. Trend alarm

Purpose: To verify that a trend alarm is given at the
correct time and that the data is analysed correctly.

Setup: This test was performed on simulated data.
Procedure: Simulated data of a patient in a worsening

condition was used. It was observed how the trend alarm
reacted on this data. For this test the trend-alarm was
modified to output the internal results of the analysis
of the signal. These results could be held up with the
parameters of the simulated data. The test was satisfied
if trend-alarm found the period for any given signal and
that it was capable of meaning the samples contained
in several periods. Furthermore it was observed whether
the signals were time-shifted correctly. Finally it was
expected that the found cross correlation coefficient and
amplitude difference indicated a worsening condition by
the patient.

Results It was observed that all internal results from
the trend alarm were correct compared to the simu-
lated input signals. The period for the simulated signal
was found and the signal was meaned and time-shifted
correctly. Furthermore it was observed that the cross
correlation coefficient and the amplitude difference were
calculated correctly, resulting in correct given alarms.

IV. RESULTS

The results for the test cases are described in the
following.

A. Connection, display and distribution

It is observed that the monitoring unit lists the avail-
able bedside units after having been intialised and that
a connection to the bedside unit is made. Furthermore
it is observed that the data is obtained correctly by the

monitoring unit and is shown in the appropriate areas of
the graphical user interface. When connecting more than
one monitoring unit the data is successfully distributed
to all connected monitoring devices.

B. Threshold alarm

It is observed that the system triggers and displays a
threshold alarm when the test person is hyperventilating,
raising the respiratory frequency above 16 breaths/min.

C. Equipment alarm

It is observed that the system detects a disconnected
probe and that an alarm is shown on the monitoring unit.

D. Trend alarm

It is observed that all internal results from the trend
alarm are correct compared to the simulated input sig-
nals. The period for the simulated signal is found and the
signal is meaned and time-shifted correctly. Furthermore
it is observed that the cross correlation coefficient and the
amplitude difference are calculated correctly, resulting in
correct given alarms.

V. DISCUSSION

The purpose of this study is to investigate the possi-
bility of designing an intelligent alarm system capable
of evaluating alarms based on data from several medical
monitoring devices, and thus enable a user to monitor
patient data from any given location.
The system has been implemented as a distributed sys-
tem with bedside units collecting data from patients,
and distributing these to multiple monitoring units. The
current system is able to collect data from a Brüel &
Kjær Anesthetic Gas Monitor, type 1304 and a Siemens
Servo Ventilator 300. The profile handling is structured
so as to be general. In this study, two different standard
profile types, COLD and CABG, are implemented to
prove the concept of the system. The flexibility of
the system enables users to create additional standard
profiles. The profiles can be customised through the use
of individual profiles for each patient. These customised
profiles describe how alarms must be triggered.

The fact that the system collects data from the mea-
suring devices connected to the patient. These collected
data can be distributed to several monitoring units con-
nected through the network. The system can determine
threshold alarms when measurements exceed threshold
limits defined by the profiles. The system is also able
to determine if an alarm is caused by equipment failure.
Both alarm types can be displayed on the monitoring



9

unit. The system is not able to trigger trend alarms
based on measured medical data. In the case of network
link failure, basic functionality of the system is only
maintained on the monitoring unit located on the same
machine as the bedside unit. However features requiring
access to the central data repository are not available.
These are: Saving continuous measured patient data,
calculating trend alarms, and saving a customised profile.

The system has been implemented in the programming
language Java which makes it platform independent. This
means that a monitoring unit can run on a portable
device, e.g. a tablet PC, connected to a network. This
way a user can monitor the patients, via e.g. WLAN1.
This feature can save the user time in the everyday work,
allowing focus on medical support.
The programmed trend alarm module should be im-
plemented as to enable the system to trigger trend
alarms based on measured medical data. A feature that
could prove useful to incorporate into the system is a
monitoring unit capable of displaying several patients
data concurrently. This will aid in keeping the amount
of equipment needed to monitor several patients down
to a minimum.
Instead of using serialized objects, communication be-
tween the bedside unit and the monitoring unit could be
achieved by communicating via XML-documents. XML
is platform independent and will ease future integration
into other Hospital Information Systems (HIS). For sup-
port of a wider range of medical monitoring devices
additional drivers should be implemented. The program
has been structured with a device-superclass, that eases
the development and integration of new device-drivers.
The structure of the system allows it to be used as an all-
purpose monitoring system. A system like this has many
areas of applications where the need to homogenise data
collection and to compare measurements continuously
exists.

Thus, this study has shown that it is possible to
collect data from several medical monitoring devices and
through a distributed system, display data and evaluate
alarms based on these data.

REFERENCES

[1] C.S. Giles, J. Edworthy, R.D.H. Brown, and C. Davies, “Itu
alarm confusion - a smart solution,” IEE Colloquium Medical
Equipment Alarms: the Need, the Standards, the Evidence (Ref.
No.1998/432), p. 44, Oct. 1998.

[2] Simon B. Larsen and Thomas Borup, “Icumatic - udvikling af
et informationssystem til praktisk anvendelse i forbindelse med
intensiv overvågning,” M.S. thesis, Aalborg University - Medical
Informatics, 2002.

1Wireless Local Area Network.

[3] Random Signals Detection, Estimation and Data Analysis, John
Wiley and Sons., 1988.

[4] S. Deering, “Host extensions for ip multicasting,” Internet RFC,
1989, http://rfc.sunsite.dk/rfc/rfc1112.html.


